Date _____

In Exercises 1–4, simplify the expression.

 1. -|-2| 2. |-7|-|7|

 3. $|-3 \cdot 2|$ 4. $\left|\frac{-15}{5}\right|$

In Exercises 5–12, solve the equation. Graph the solution(s), if possible.

- 5. |r| = 56. |q| = -77. |b - 2| = 58. |k + 6| = 99. |-5p| = 3510. $\left|\frac{a}{3}\right| = 4$ 11. |8y - 3| = 1312. |x + 4| + 7 = 3
- **13.** The minimum distance between two fence posts is 4 feet. The maximum distance is 10 feet.
 - a. Represent these two distances on a number line.
 - **b.** Write an absolute value equation that represents the minimum and maximum distances.

In Exercises 14–19, solve the equation. Check your solutions.

- 14. |j| = |2j + 3| 15. |3f 6| = |9f|

 16. |b + 3| = |2b 2| 17. |4h 2| = 2|h + 3|

 18. 3|w 5| = |2w + 10| 19. |2y + 5| = 3y
- 20. Your friend says the absolute value equation |2x + 9| + 7 = 3 has two solutions because the constant on the right side of the equation is positive. Is your friend correct? Explain.
- **21.** Describe a real-life situation that can be modeled by an absolute-value equation with the solutions x = 5 and x = 10.

Date_

1.4 Practice WS B

In Exercises 1–10, solve the equation. Graph the solution(s), if possible.

- 1. |p 3| = 10 2. |-2k| = 6

 3. |6f| = -2 4. $\left|\frac{q}{5}\right| = 3$

 5. |-a + 2| + 9 = 6 6. 3|4 3m| = 30

 7. -4|5g 12| = -12 8. |x 3| + 9 = 30

 9. 3|2d 6| + 2 = 2 10. 7|2c 6| + 4 = 32
- 11. A company manufactures penny number 2 nails that are 1 inch in length. The actual length is allowed to vary by up to $\frac{1}{32}$ inch.
 - **a.** Write and solve an absolute value equation to find the minimum and maximum acceptable nail length.
 - **b.** A penny number 2 nail is 1.05 inches long. Is the nail acceptable? Explain.

In Exercises 12–14, write an absolute value equation that has the given solutions.

12. 3 and 9 13. -5 and 15 14. 4 a	nd 11
--	-------

In Exercises 15–20, solve the equation. Check your solutions.

15.	9w - 4 = 2w + 10	16.	2 n+7 = 4n+8
17.	3 3t + 1 = 2 6t + 3	18.	5r+3 = 2r
19.	$\left j-5\right = \left j+9\right $	20.	$\left 2k + 4\right = \left 2k + 3\right $

- **21.** You conduct a random survey of your small town about having a townwide garage sale. Of those surveyed, 56% are in favor and 44% are opposed. The actual percent could be 5% more or 5% less than the acquired results.
 - **a.** Write and solve an absolute value equation to find the least and greatest percents of your town population that could be opposed to a townwide garage sale.
 - **b.** A friend claims that half the town is actually opposed to a townwide garage sale. Does this statement conflict with the survey data? Explain.