$\qquad$
1.4

## Practice WS A

In Exercises 1-4, simplify the expression.

1. $-|-2|$
2. $|-7|-|7|$
3. $|-3 \cdot 2|$
4. $\left|\frac{-15}{5}\right|$

## In Exercises 5-12, solve the equation. Graph the solution(s), if possible.

5. $|r|=5$
6. $|q|=-7$
7. $|b-2|=5$
8. $|k+6|=9$
9. $|-5 p|=35$
10. $\left|\frac{a}{3}\right|=4$
11. $|8 y-3|=13$
12. $|x+4|+7=3$
13. The minimum distance between two fence posts is 4 feet. The maximum distance is 10 feet.
a. Represent these two distances on a number line.
b. Write an absolute value equation that represents the minimum and maximum distances.

In Exercises 14-19, solve the equation. Check your solutions.
14. $|j|=|2 j+3|$
15. $|3 f-6|=|9 f|$
16. $|b+3|=|2 b-2|$
17. $|4 h-2|=2|h+3|$
18. $3|w-5|=|2 w+10|$
19. $|2 y+5|=3 y$
20. Your friend says the absolute value equation $|2 x+9|+7=3$ has two solutions because the constant on the right side of the equation is positive. Is your friend correct? Explain.
21. Describe a real-life situation that can be modeled by an absolute-value equation with the solutions $x=5$ and $x=10$.
$\qquad$

### 1.4 Practice WS B

In Exercises 1-10, solve the equation. Graph the solution(s), if possible.

1. $|p-3|=10$
2. $|-2 k|=6$
3. $|6 f|=-2$
4. $\left|\frac{q}{5}\right|=3$
5. $|-a+2|+9=6$
6. $3|4-3 m|=30$
7. $-4|5 g-12|=-12$
8. $|x-3|+9=30$
9. $3|2 d-6|+2=2$
10. $7|2 c-6|+4=32$
11. A company manufactures penny number 2 nails that are 1 inch in length.

The actual length is allowed to vary by up to $\frac{1}{32}$ inch.
a. Write and solve an absolute value equation to find the minimum and maximum acceptable nail length.
b. A penny number 2 nail is 1.05 inches long. Is the nail acceptable? Explain.

In Exercises 12-14, write an absolute value equation that has the given solutions.
12. 3 and 9
13. -5 and 15
14. 4 and 11

In Exercises 15-20, solve the equation. Check your solutions.
15. $|9 w-4|=|2 w+10|$
16. $2|n+7|=|4 n+8|$
17. $3|3 t+1|=2|6 t+3|$
18. $|5 r+3|=2 r$
19. $|j-5|=|j+9|$
20. $|2 k+4|=|2 k+3|$
21. You conduct a random survey of your small town about having a townwide garage sale. Of those surveyed, $56 \%$ are in favor and $44 \%$ are opposed. The actual percent could be 5\% more or 5\% less than the acquired results.
a. Write and solve an absolute value equation to find the least and greatest percents of your town population that could be opposed to a townwide garage sale.
b. A friend claims that half the town is actually opposed to a townwide garage sale. Does this statement conflict with the survey data? Explain.

