\qquad Date \qquad Pd \qquad
CYU 1.5 Measuring \& Constructing Angles AND 1.6 Describing Pairs of Angles
\square Use when you get it right all by yourself
S Use when you did it all by yourself, but made a silly mistake
\boldsymbol{H} Use when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
X Use when a question was attempted but wrong (get help)
N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADV ANCED
Adjacent \& nonadjacent angles		7, 8	
Complementary \& Supplementary angles			
Linear Pair	6		
Vertical Angles	5		
Interior/Exterior of an Angle	1		
Naming \& Classifying Angles	2, 3, 4, 5		
Angle Bisectors		8	
\qquad 1. Name all the points in the interior of $\angle \mathrm{SNB}$.\qquad 2. Give another name for $\angle \mathrm{SNF}$.\qquad 3. Name the sides of $\angle \mathrm{BNS}$.\qquad 4. Name the vertex of $\angle \mathrm{TNB}$.\qquad 5. Name a pair of vertical angles.\qquad 6. Name a pair of angles that are a linear pair.			

Equation \& answer
Reason
7. $\begin{aligned} \mathrm{m} \angle \mathrm{PQS} & =6 \mathrm{x}^{\circ} \\ \mathrm{m} \angle \mathrm{SQR} & =2 \mathrm{x}^{\circ} \\ \mathrm{m} \angle \mathrm{PQR} & =24^{\circ}\end{aligned}$

Find the $\mathrm{m} \angle \mathrm{SQR}$ and $\mathrm{m} \angle \mathrm{PQS}$
8. If $\angle P Q S$ is bisected and
$m \angle P Q R=(x+14)^{\circ}$
$\mathrm{m} \angle \mathrm{RQS}=(3 \mathrm{x}-18)^{\circ}$
Find $\mathrm{m} \angle \mathrm{PQS}$
Give the measure of the complement and supplement of each angle, if possible.
9. $\mathrm{m} \angle \mathrm{A}=40^{\circ}$
10. $\mathrm{m} \angle \mathrm{C}=102^{\circ}$
$\mathrm{C}=$
S =
$\mathrm{C}=$
$S=$

| $11 . \mathrm{m} \angle 1=(9 \mathrm{x}-12)^{\circ}$, | |
| :--- | :--- | :--- |
| $\mathrm{m} \angle 3=(4 \mathrm{x}+38)^{\circ}$ | |
| Find the measure of $\angle 1$ | |

Set up an equation and solve the following.

13. The measure of an angle is twice the measure of its complement. Find the measure of the angles.
14. The measure of the supplement of an angle is 30 more than twice the measure of the angle. Find the measure of the angles.

$15 . \mathrm{m} \angle 1=4 \mathrm{x}^{\circ}, \mathrm{m} \angle 2=7 \mathrm{x}^{\circ}$,		
$\mathrm{m} \angle 3=6 \mathrm{x}^{\circ}$		
Find the measure of each \angle.		
$16 . \mathrm{m} \angle 1=\mathrm{m} \angle 2, \mathrm{~m} \angle 3=40^{\circ}$		Reason
Find the $\mathrm{m} \angle \mathbf{1}$ and $\mathrm{m} \angle 2$.		

For each angle, classify it by appearance as acute, right, obtuse or straight.
17. $\angle \mathrm{CBD}$
18. $\angle \mathrm{EBC}$
19. $\angle \mathrm{GBD}$
20. $\angle \mathrm{GBF}$

CYU Reflection: How far can you go: basic, intermediate, or advanced?
 Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

