Name \qquad Date \qquad Pd \qquad
10.7 Circles in the Coordinate Plane CYU
\square Use when you get it right all by yourself \boldsymbol{S} Use when you did it all by yourself, but made a silly mistake \boldsymbol{H} Use when you could do it alone with a little help from teacher or peer \boldsymbol{G} Use when you completed the problem in a group X Use when a question was attempted but wrong (get help)
\boldsymbol{N} Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Writing equations of circles	$1-4$	5,6	10
Distance formula	5,6		10
Matching Graphs and equations	$7-9$		10
Identifying the center (h, k)	$1-6$	$7-9$	10
Identifying the radius, r	$1-4$	$2,5-9$	11
Real-World Application		5,6	
Graphing circle			

In Exercises 1-4, write the standard equation of the circle with the given center and radius.

1.

2.

3. A circle with center $(0,0)$ and radius 8
4. A circle with center $(0,-5)$ and radius 2

In Exercises 5 \& 6, use the center and a point on the circle to write the standard equation of the circle, and then graph that circle.
5. center: $(0,0) \&$ point: $(3,-4)$

6. Center: $(3,-2) \&$ point: $(23,19)$

In Exercises 7-9, match each graph with its equation.

7.

8.

9.

A. $x^{2}+y^{2}=4$
B. $(x-3)^{2}+y^{2}=4$
C. $(x+3)^{2}+y^{2}=4$
10. Prove or Disprove that the point $(-3,3)$ lies on the circle centered at the origin with the radius of 4 units.
11. You are using a math software program to design a pattern for an Olympic flag. In addition to the dimensions shown in the diagram, the distance between the outer edges any two adjacent rings in the same row is 3 inches.
a. Use the given dimensions to write equations representing the outer circles of the five rings. Use inches as units in a coordinate plane with the lower left corner of the flag on the origin.

b. Each ring is 3 inches thick. Explain how you can adjust the equations of the outer circles to write equations representing the inner circles.

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery leve!!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

