11.3 Area of Polygons

Finding Angle Measures in Regular Polygons

The diagram shows a regular polygon inscribed in a circle. The **center of a regular polygon** and the **radius of a regular polygon** are the center and the radius of its circumscribed circle.

The distance from the center to any side of a regular polygon is called the **apothem of a regular polygon**. The apothem is the height to the base of an isosceles triangle that has two radii as legs. The word "apothem" refers to a segment as well as a length. For a given regular polygon, think of *an* apothem as a segment and *the* apothem as a length.

 $\angle MPN$ is a central angle.

A **central angle of a regular polygon** is an angle formed by two radii drawn to consecutive vertices of the polygon. To find the measure of each central angle, divide 360° by the number of sides.

Mar 6-1:13 PM

Area of a regular polygon

Finding Areas of Regular Polygons

A = Area of one triangle • Number of triangles

You can find the area of any regular n-gon by dividing it into congruent triangles.

 $= \left(\frac{1}{2} \cdot s \cdot a\right) \cdot n$

 $= \frac{1}{2} \cdot a \cdot (n \cdot s)$

 $=\frac{1}{2}a \cdot P$

Base of triangle is *s* and height of triangle is *a*. Number of triangles is *n*.

Commutative and Associative Properties of Multiplication

There are n congruent sides of length s, so perimeter P is $n \cdot s$.

$$A = \frac{1}{2}ap$$

Regular polygons have all sides of equal length .

a = apothem
p = perimeter

Feb 15-1:41 PM

11.3 Area of Polygons with work

Feb 15-1:41 PM

Finding Areas of Rhombuses and Kites

You can divide a rhombus or kite with diagonals d_1 and d_2 into two congruent triangles with base d_1 , height $\frac{1}{2}d_2$, and area $\frac{1}{2}d_1(\frac{1}{2}d_2)=\frac{1}{4}d_1d_2$. So, the area of a rhombus or kite is $2(\frac{1}{4}d_1d_2)=\frac{1}{2}d_1d_2$.

G Core Concept

Area of a Rhombus or Kite

The area of a rhombus or kite with diagonals d_1 and d_2 is $\frac{1}{2}d_1d_2$.

11.3 Area of Polygons with work

Example 2:

Find the area of each rhombus or kite.

$$A = \frac{1}{2}(5)(11)$$
= \(\frac{27.5}{1} \tag{1} + \frac{27.5}{1} \tag{1}

$$A = \frac{1}{2}(10)(24)$$
= 120mm^2

Example 3:

In the diagram, polygon ABCDEFGHJK is a regular decagon inscribed in $\odot P$. Find each angle measure.

Practice:

In the diagram, WXYZ is a square inscribed in ⊙P.

3. Identify the center, a radius, an apothem,

and a central angle of the polygon.

Center P; YP or XP; PQ

4. Find m∠XPY, m∠XPQ and m∠PXQ

11.3 Area of Polygons with work

HW: pg. 614

A: 25, 29, 31, 37, 39, 41, 47, 49

B: 1, 5, 9, 13, 17, 19, 25, 29, 31, 37

C: 1 - 31 (o)

Mar 7-6:44 AM