2.1 Frequency Distributions and Histograms with work

2.1 Frequency Distributions, Histograms, and Related Topics

Focus Points:

- · Organize raw data using a frequency table.
- Construct histograms, relative-frequency histograms, and onives.
- recognize basic distribution shapes: uniform, symmetric, skewed, and bimodal.
- interpret graphs in the context of the data setting.

A frequency table partitions data into classes or intervals of equal width and shows how many data values are in each class.

Sep 12-10:27 AM

Sep 12-10:47 AM

Example 1: Downtown Dallas

A task force to encourage car pooling did a study of one-way commuting distances of workers in the downtown Dallas area. An SRS of 60 workers was taken. The commuting distances of the workers in the sample is given below. (Do 6 classes)

13	47	10	3	16	20	17	40	4	2
7	25	8	21	19	15	3	17	14	6
12	45	1	8	4	16	11	18	23	12
6	2	14	13	7	15	46	12	9	18
34	13	41	28	36	17	24	27	29	9
14	26	10	24	37	15 17 31	8	16	12	16

First: determine how many classes (5 - 15) then find the width of the class using the formula below.

$$\frac{\text{largest data value - smallest data value}}{\text{Desired number of classes}} = \frac{47 - 1}{6} = \frac{4b}{6}$$

The formula above helps determine the lower and upper class limit. The lower class limit is the lowest data value that can fit in a class. The upper class limit is the highest data value that can fit in a class. The class width is the difference between the lower class limit of one class and the lower class limit of the next class.

1-8,9-16

×7. _\\

Sep 12-10:49 AM

Sep 12-10:56 AM

Second: Tally the frequency (number of data entries) in each class

- The class frequency for a class is the number of tally marks corresponding to that class.
- The class midpoint is the center of each class determined by the formula below.

 $Midpoint = \frac{lower class limit + upper class limit}{2}$

Sep 12-11:32 AM Sep 12-11:33 AM

2.1 Frequency Distributions and Histograms with work

Sep 12-12:25 PM

HOW TO MAKE A FREQUENCY TABLE

- 1. Determine the number of classes and each class width
- width (5-15)

 2. Create the distinct classes. Lower and Upper class limit
- Tally the data into classes. Each data value should fall into exactly one class. Total class tally for class frequency.
 - Compute the midpoint for each class. (AV www.)
- 5. Determine the class boundaries. (± 5

Sep 12-12:33 PM

RELATIVE-FREQUENCY TABLE

Follow steps 1 - 5 then do step 6.

6. To turn the table into a relative-frequency table compute the $\frac{f}{n}$, where f is the class frequency and n is the total sample size.

Histograms and relative-frequency histograms provide effective visual displays of data organized into frequency tables. Histograms are like bar charts but the bars touch. Each bar represents a class and the height of the bar is the frequency or relative-frequency.

Sep 12-12:43 PM

Sep 12-12:36 PM

HOW TO MAKE A HISTOGRAMS

- Make a frequency table with the designated number of classes
- Place class boundaries on the x-axis and frequencies (or relative-frequencies) on the yaxis
- For each class of the frequency table, draw a bar whose width extends between corresponding class boundaries.

Sep 12-12:40 PM Sep 12-12:49 PM

2.1 Frequency Distributions and Histograms with work

Mound-shaped symmetrical: both sides of the histogram are basically the same. If folded vertically down the middle it will match. Uniform: every class in the histogram has the same frequency. bars are the same height. Skewed: a histogram can be skewed left or right based on the way the tail stretches out long towards. Bimodal: two classes in the histogram have the largest frequencies and they are separated from at least one class.

Sep 12-3:10 PM Sep 12-12:54 PM

When describing histograms be sure to include the center (median), spread (range), shape (symmetric, skewed, etc.), and unusual features (gaps/clusters, outliers, etc)!

Outliers in a data set are the data values that are very different from other measurements in the data set.

Grades in a class: 87, 89, 93, 91, 85, 12

Sep 19-8:13 AM Sep 12-3:20 PM

HOW TO MAKE A DOTPLOT

| For Covering to a Banker Department of 2000 Months to Months
| For Covering to a Banker Department of 2000 Months to Months
| For Covering to a Banker Department of 2000 Months to Months
| For Covering to a Banker Department of 2000 Months to Months
| For Covering to a Banker Department of 2000 Months to Months
| For Covering to a Banker Department of 2000 Months to Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
| For Covering to a Banker Department of 2000 Months
|

- Display the dots on a horizontal axis (like a number line)
- 2. Plot each data value with a dot or point above the corresponding value on the horizontal axis.
- 3. For repeated data values, stack the dots.

HW: pg. 52: 1 - 7, 15, 19, 24

Sep 12-3:27 PM Sep 12-3:21 PM