Name	Date	Pd
------	------	----

2.4 Modeling Quadratic Functions using Regression CYU DAY FOUR

 \square Use when you get it right all by yourself

 $oldsymbol{\mathcal{S}}$ Use when you did it all by yourself, but made a silly mistake

HUse when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Quadratic Regression	1, 3 , 10 - 13	6, 7	8, 9
Maximum/Minimum	2	6	
Writing a Best Fit Model	1, 3, 10 - 13	6, 7	5, 8, 9
Prediction		4, 7	

Amery recorded the distance and height of a basketball when shooting a free throw.

 Find the quadratic equation for the relationship of the horizontal distance and the height of the ball. Round to 3 decimal places.

Distance(feet),	Height (feet),
X	f(x)
0	4
2	8.4
6	12.1
9	14.2
12	13.2
13	10.5
15	9.8

2. Using this function what is the approximate maximum height of the ball?

This table shows the population of a city every ten years since 1970.

- Find the best-fitting quadratic model for the data. Round to 3 decimal places.
- 4. Using this model, what will be the estimated population in 2020?

Years Since 1970,	Population (In thousands),	
X	у	
0	489	
10	801	
20	1,202	
30	1,998	
40	2,959	

- 5. Which of the following is best modeled by a *quadratic* function?
 - A. Relationship between circumference and diameter.
 - B. Relationship between area of a square and side length.
 - C. Relationship between diagonal of a square and side length.
 - D. Relationship between volume of a cube and side length.
- 6. If y is a quadratic function of x, which value completes the table?
 - A. 12
 - B. 20
 - C. 44
 - D. 48

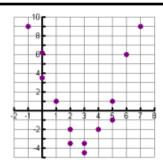
х	-2	0	2	4	6
у	-8	0	12	28	

- 7. The graph of a quadratic function having the form $f(x) = ax^2 + bx + c$ passes through the points (0, -8), (3, 10), and (6, 34). What is the value of the function when x = -3?
 - A. -32

B. -26

C. -20

D. 10

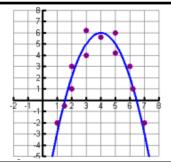

8. Which is the quadratic equation the best fits the scatterplot?

A.
$$f(x) = (x-3)^2 - 4$$

B.
$$f(x) = (x+3)^2 + 4$$

C.
$$f(x) = (x-4)^2 - 3$$

D.
$$f(x) = (x+4)^2 + 3$$


9. Which is the quadratic equation the best fits the scatterplot?

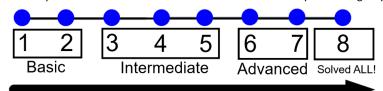
A.
$$f(x) = x^2 - 8x + 22$$

B.
$$f(x) = -x^2 - 8x - 10$$

C.
$$f(x) = -x^2 + 8x - 32$$

D.
$$f(x) = -x^2 + 8x - 10$$

Write a quadratic equation that fits each set of points.


13.

х	-1	0	1	2	3
у	35	22	11	2	-5

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

