\qquad Date \qquad Pd \qquad

2.4 Quadratic Regression DAY THREE CYU

\square Use when you get it right all by yourself
\boldsymbol{S} Use when you did it all by yourself, but made a silly mistake H Use when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
X Use when a question was attempted but wrong (get help)
N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Finite Differences	1 a		
Graphing Quadratics	1 b	2 a	
Labeling a Graph	1 b	2 a	
Writing a Quadratic Model (calculator)	1 c	$2 \mathrm{~b}, 3 \mathrm{a}$	
Finding the Maximum Height	1 d		
Finding when an object hits the ground	1 e		
Finding Initial Height	1 f		
Prediction		2c, 3bc	

1) The data in this table represent the height of an object (in meters) at different times (in seconds) during flight.

Object

Time $(\mathrm{s}) \mathrm{t}$	0	1	2	3	4	5	6
Height $(\mathrm{m}) \mathrm{h}$	4	63.1	112.4	151.9	181.6	201.5	211.6

a) Calculate the finite differences for the data. What degree polynomial function would you use to model the data set? (first difference: linear, second difference: quadratic)
b) Graph the data. Be sure to label the axes.

c) Write a polynomial function to model the data set. Check your polynomial by checking it against the given data set. (Do quadratic regression on your calculator.) $f(x)=$
$\mathrm{a}=$
$\mathrm{b}=$
$\mathrm{c}=$
d) What is the maximum height of the object? \qquad

$$
(\quad, \quad)
$$

e) When did the object hit the ground? \qquad
f) What is the initial height of the object? \qquad
2) The table below shows the number of calories burned in 1 hour when running at various speeds.

Running Speed (mph)	Calories Burned
10	1126
10.9	1267
5	563
5.2	633
6	704
6.7	774
7	809
8	950
8.6	985
9	1056
7.5	880

a) Plot the data below. Be sure to label the axes.

b) Write a quadratic function to model the data set. Check your polynomial by checking it against the given data set.

$$
\begin{aligned}
& f(x)= \\
& \\
& \mathrm{a}=\quad \mathrm{b}= \mathrm{c}=
\end{aligned}
$$

c) How many calories does this model predict a person who runs at 9.5 mph for 1 hour will burn? Round to the nearest calorie.
3) The fuel efficiency, in miles per gallon, for a certain midsize car at various speeds, in miles per hour, is given in the table below.

Fuel Efficiency of a Midsize Car

mph	mpg
25	29
30	32
35	33
40	35
45	34
50	33
55	31
60	28
65	24
70	19
75	17

a) Find a quadratic model for these data.

$$
f(x)=
$$

$\mathrm{a}=$
$\mathrm{b}=$
$\mathrm{c}=$
b) Use the model to predict the fuel efficiency of this car when it is traveling at a speed of 57 mph .

Ans. \qquad
c) Use the model to predict the fuel efficiency of this car when it is traveling at a speed of 78 mph .

Ans. \qquad

CYU Reflection: How far can you go: basic, intermediate, or advanced? Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

