Name

CYU 2.5 & 2.6 Reasoning in Proofs DAY THREE

Date

☑ Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake

HUse when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Given	1 - 12		
Transitive POE/POC	1, 2, 4 - 7		
Symmetric POE/POC	1, 2, 5, 6		
Segment/Angle Addition Postulate		8, 11	
Def. of Complementary/Supplementary Angles	3, 9		
Def. of vertical angles	5, 6		
Def. of Perpendicular Segments/Lines	9		
Substitution POE		8, 10, 11	
Def. of midpoint	4	7	
Def. of equilateral triangle	6	12	
Def. of linear pair	10	10	
Addition/ Subtraction POE/POC	10		
Simplify or Combine Like Terms (CLT)	8		

1) Given: $\angle 1 \cong \angle 3$ $\angle 5 \cong \angle 3$

Prove: $\angle 1 \cong \angle 5$

Prove: $\overline{PQ} \cong \overline{QR}$

Statements	Reasons
1 . $\overline{PQ} \cong \overline{RS}$	1
$\overline{QR} \cong \overline{RS}$	
2 . $\overline{RS} \cong \overline{QR}$	2
3 . $\overline{PQ} \cong \overline{QR}$	3

Prove: $\angle 1$ & $\angle 2$ are complementary.

Statements Reasons Statements Reasons 1. $\overline{HI} \cong \overline{HJ}$ 1. 1. *m*∠1=35° 1. H is midpt of \overline{GI} $m \angle 2 = 55^{\circ}$ 2. **2**. $\overline{GH} \cong \overline{HI}$ **2**. $m \angle 1 + m \angle 2 = 90$ 2. 3. **3**. $\overline{GH} \cong \overline{HJ}$ 3. 3. ∠1 & ∠2 are complementary

6) Given: ΔJKL is equiangular K

Prove: ∠4 ≅ ∠1

P rove: ∠3 ≅ ∠1	
Statements	Reasons
1 . ∠3 ≅ ∠2	1
2 . ∠1 ≅ ∠2	2
3 . ∠2≅ ∠1	3
4 . ∠3 ≅ ∠1	4

5) Given: $\angle 3 \cong \angle 2$

7) Given:
$$\overline{MA} \cong \overline{AM}$$
 A M B
M is the midpoint of \overline{AB}

Prove: $\overline{NA} \cong \overline{MB}$

	J L 4
Statements	Reasons
 ∆JKL is Equiangular 	1
2 . ∠1 ≅ ∠3	2
3 . ∠3 ≅ ∠4	3
4 . ∠1 ≅ ∠4	4
5 . ∠4 ≅ ∠1	5

8) Given: B is between A & C

AB = 9			
BC = 7	Å	B	ċ
Prove: 16 = AC		_	

4._____

Statements Reasons Statements Reasons 1. $\overline{NA} \cong \overline{AM}$ 1. 1. B is between 1. M is midpt of \overline{AB} A & C **2**. $\overline{AM} \cong \overline{MB}$ 2. AB = 9 **3**. $\overline{NA} \cong \overline{MB}$ 3. BC = 7 2. AB + BC = AC2._____ 3._____ 3.9 + 7 = AC

4. 16 = AC

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

