\qquad Date \qquad Pd \qquad

CYU 2.5 \& 2.6 Reasoning in Proofs DAY THREE

\square Use when you get it right all by yourself \boldsymbol{S} Use when you did it all by yourself, but made a silly mistake \boldsymbol{H} Use when you could do it alone with a little help from teacher or peer \boldsymbol{G} Use when you completed the problem in a group X Use when a question was attempted but wrong (get help) N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADV ANCED
Given	$1-12$		
Transitive POE/POC	$1,2,4-7$		
Symmetric POE/POC	$1,2,5,6$		
Segment/Angle Addition Postulate			
Def. of Complementary/Supplementary Angles	3,9		
Def. of vertical angles	5,6		
Def. of Perpendicular Segments/Lines	9	$7,10,11$	
Substitution POE	4	7	
Def. of midpoint	6		
Def. of equilateral triangle	10		
Def. of linear pair	10		
Addition/ Subtraction POE/POC	8		
Simplify or Combine Like Terms (CLT)			

1) Given: $\angle 1 \cong \angle 3$ $\angle 5 \cong \angle 3$
Prove: $\angle 1 \cong \angle 5$

Statements

1. $\angle 1 \cong \angle 3$ $\angle 5 \cong \angle 3$
2. $\angle 3 \cong \angle 5$
3. $\angle 1 \cong \angle 5$
4.
5. \qquad
\qquad

Reasons

1. \qquad

2) Given: $\overline{P Q} \cong \overline{R S}$ $\overline{Q R} \cong \overline{R S}$

Prove: $\overline{P Q} \cong \overline{Q R}$
Prove: $P Q$

Statements	Reasons
1. $\overline{P Q} \cong \overline{R S}$	1.
$\overline{Q R} \cong \overline{R S}$	
2. $\overline{R S} \cong \overline{Q R}$	2.
3. $\overline{P Q} \cong \overline{Q R}$	3.

3) Given: $m \angle 1=35^{\circ}$ $m \angle 2=55^{\circ}$

Prove: $\angle 1 \& \angle 2$ are complementary.
4) Given: H is the midpoint of $\overline{G I}$ $\overline{H I} \cong \overline{H J}$
Prove: $\overline{G H} \cong \overline{H J}$

Statements	Reasons
1. $\overline{H I} \cong \overline{H J}$	1.
H is midpt of $\overline{G I}$	
2. $\overline{G H} \cong \overline{H I}$	2.
3. $\overline{G H} \cong \overline{H J}$	3.

5) Given: $\angle 3 \cong \angle 2$

Prove: $\angle 3 \cong \angle 1$

6) Given: $\Delta J K L$ is equiangular K Prove: $\angle 4 \cong \angle 1$

	Reasons
Statements	R.
1. \triangle JKL is	
Equiangular	2.
2. $\angle 1 \cong \angle 3$	3.
3. $\angle 3 \cong \angle 4$	
4. $\angle 1 \cong \angle 4$	4.
5. $\angle 4 \cong \angle 1$	5.

8) Given: B is between $A \& C$

$$
A B=9
$$

$$
B C=7
$$

Prove: $16=A C$

Statements	Reasons
1. $\overline{N A} \cong \overline{A M}$	1.
M is midpt of $\overline{A B}$	
2. $\overline{A M} \cong \overline{M B}$	2.
3. $\overline{N A} \cong \overline{M B}$	3.

Statements	Reasons
1. B is between	1.
$A \& C$	
$A B=9$	
$B C=7$	
2. $A B+B C=A C$	2.
3. $9+7=A C$	3.
4. $16=A C$	4.

9) Given: $\angle 1 \& \angle 2$ are complementary Prove: $\overline{S X} \perp \overline{W X}$

10) Given: $m \angle 2=90^{\circ}$

Prove: $m \angle 1=90^{\circ}$

Statements	Reasons	Statements	Reasons
1. $\angle 1 \& \angle 2$ are complementary	1.	1. $m \angle 2=90^{\circ}$ 2. $\angle 1 \& \angle 2$ form a linear pair 3. $m \angle 1+m \angle 2=180$	$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \end{aligned}$
2. $\angle W X S$ is right	2.	4. $m \angle 1+90=180$	4.
3. $\overline{S X} \perp \overline{W X}$		5.	

12) Given: $\triangle A B D$ is equilateral $\overline{B D} \cong \overline{B C}$
Prove: \qquad

Statements	Reasons	Statements	Reasons
$\begin{aligned} & \text { 1. } m \angle N L M=90^{\circ} \\ & m \angle 1=m \angle 3 \end{aligned}$	1.	1. $\triangle A B D$ is equilateral	
$\text { , } m \angle 1+m \angle 2=$	2	$\overline{B D} \cong \overline{B C}$	
2. $m \angle N L M$		2. $A \bar{B} \cong \overline{B D}$	
3. $m \angle 1+m \angle 2=90^{\circ}$	3.		3. Transitive Prop of \cong
4. $m \angle 3+m \angle 2=90^{\circ}$	4.		

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

