\qquad Date \qquad Pd \qquad

CYU 2.6 Geometric Reasoning DAY ONE

\square Use when you get it right all by yourself
\boldsymbol{S} Use when you did it all by yourself, but made a silly mistake HUse when you could do it alone with a little help from teacher or peer \boldsymbol{G} Use when you completed the problem in a group
X Use when a question was attempted but wrong (get help)
N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Addition/Subtraction POE/POC	1,3	$3,6,7$	3,8
Multiplication/Division POE/POC	3	3	3
Substitution POE		7	8
Transitive POE/POC	2	3,7	4,8
Def. of Complementary/Supplementary Angles	1	$3,5,7$	$3,6,8$
Def. of Complement/Supplement	1,2	$3,5,7$	$3,6,8$
Def. of Congruent Angles/Segments	1,2	3	$3,4,8$
Def. of Linear Pairs/Def. of Vertical Angles			

1. Identify the pair(s) of congruent angles in the figures. Explain how you know they are congruent.
$\angle A B C$ is supplementary to $\angle C B D$.
a.

b. $\angle C B D$ is supplementary to $\angle D E F$.

2. Use the diagram and the given angle measure to find the other three measures.
a. $m \angle 1=143^{\circ}$
b. $m \angle 3=159^{\circ}$
c. $m \angle 2=34^{\circ}$

3. Find the values of x and y.
a.

b.

4. Complete the flowchart proof. Then transfer it into a two-column proof.

Given $\angle 1 \cong \angle 3$

5. Complete the two-column proof and then transfer it into a paragraph proof.

STATEMENTS	REASONS
1. $\angle A B D$ is a right angle.	1.
$\angle C B E$ is a right angle.	2. Definition of complementary angles
2. $\angle A B C$ and $\angle C B D$ are complementary.	3.
3. $\angle D B E$ and $\angle C B D$ are complementary. 3. 4. $\angle A B C \cong \angle D B E$ 4.	

6. Complete the paragraph proof and then transfer it into a two-column proof.

$\angle 1$ and $\angle 2$ are complementary, and $\angle 1$ and $\angle 3$ are complementary. By the definition of \qquad angles, $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$ and \qquad $=90^{\circ}$. By the \qquad $\mathrm{m} \angle 1+\mathrm{m} \angle 2=$ $m \angle 1+m \angle 3$. By the Subtraction Property of Equality, \qquad So, $\angle 2 \cong \angle 3$ by the definition of \qquad -.
7. Complete the two-column proof.

Given $\angle 1$ and $\angle 2$ are supplementary. $\angle 3$ and $\angle 4$ are supplementary. $\angle 1 \cong \angle 4$	
Prove $\angle 2 \cong \angle 3$	
STATEMENTS	REASONS
1. $\angle 1$ and $\angle 2$ are supplementary. $\angle 3$ and $\angle 4$ are supplementary. $\angle 1 \cong \angle 4$	1. Given
$\text { 2. } \begin{aligned} m \angle 1+m \angle 2 & =180^{\circ}, \\ m \angle 3+m \angle 4 & =180^{\circ} \end{aligned}$	2.
3.	3. Transitive Property of Equality
4. $m \angle 1=m \angle 4$	4. Definition of congruent angles
5. $m \angle 1+m \angle 2=$	5. Substitution Property of Equality
6. $m \angle 2=m \angle 3$	6.
7.	7.

8. Write a proof using any format.
$\begin{aligned} \text { Given } & \angle 1 \text { and } \angle 3 \text { are complementary, } \\ & \angle 2 \text { and } \angle 4 \text { are complementary. } \\ \text { Prove } & \angle 1 \cong \angle 4\end{aligned}$

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

