2.8 Solving Linear Inequalities

OBJECTIVE 1: Graphing Solution Sets to Linear Inequalities & Using Interval Notation

- < means "is less than"
- > means "is greater than"
- < means "is less than or equal to"</pre>
- ≥ means "is greater than or equal to"

Equations	Inequalities
x = 3	x ≤ 3
5n - 6 = 14	5n - 6 < 14
12 = 7 - 3y	12 ≥ 7 - 3y
(x/4) - 6 = 1	(x/4) - 6 > 1

Linear Inequality in One Variable

A linear inequality in one variable is an inequality that can be written in the form ax + b < cwhere a, b, and c are real numbers and a is not 0.

A solution of an inequality is a value of the variable that makes the inequality a true statement.

A solution set is a set of all solutions.

So... if
$$x < 3$$
 then... $(x)^2 (3)$

Set builder notation was used on the last slide to show x < 3, but we can also use interval notation.

Set Builder	Inequality	Interval Notation
ξx \x ∠ 3}	X43	(- ∞, 3)
0 4 7	() •	<u> </u>

Example 1: Graph $x \ge -1$.

L61

Then write the solutions in interval notation.

Practice 1: Graph x < 5.

Then write the solutions in interval notation.

OBJECTIVE 2: Solving Linear Inequalities

Addition Property of Inequality

If a, b, and c are real numbers, then a < b and a + c < b + care equivalent inequalities.

Example 2: Solve $x + 4 \ge -6$

[-10, 00)

Practice 2: Solve $x + 1/2 \ge 6$

$$\frac{x + 11 \ge 6}{-11}$$

$$\frac{-11}{2 - 5}$$

 $[-5,\infty)$

Helpful Hint

Notice that any number less than or equal to -10 is a solution of $x \le -10$. For example, solutions include

$$-10, -200, -11\frac{1}{2}, -7\pi, -\sqrt{130}, -50.3$$

Multiplication Property of Inequality

1. If a, b, and c are real numbers, and c is positive, then

$$a < b$$
 and $ac < bc$

are equivalent inequalities.

2. If a, b, and c are real numbers, and c is negative, then

are equivalent inequalities.

Helpful Hint

Whenever both sides of an inequality are multiplied or divided by a negative number, the direction of the inequality symbol must be reversed to form an equivalent inequality.

Example 3: Solve -2x ≤ -4. Graph the solution set and write it in interval notation.

Practice 3: Solve $-5x \ge -15$. Graph the solution set and write it in interval notation.

Example 4: Solve 2x < - 4. Graph the solution set and write it in interval notation.

Practice 4: Solve 3x > -9. Graph the solution set and write it in interval notation.

Solving Linear Inequalities in One Variable

- Step 1. Clear the inequality of fractions by multiplying both sides of the inequality by the least common denominator (LCD) of all fractions in the inequality.
- Step 2. Remove grouping symbols such as parentheses by using the distributive property.
- Step 3. Simplify each side of the inequality by combining like terms.
- **Step 4.** Write the inequality with variable terms on one side and numbers on the other side by using the addition property of inequality.
- Step 5. Get the variable alone by using the multiplication property of inequality.

Helpful Hint

Don't forget that if both sides of an inequality are multiplied or divided by a negative number, the direction of the inequality symbol must be reversed.

Example 5: Solve $-4x + 7 \ge -9$. Graph the solution set and write it in interval notation.

Practice 5: Solve 45 - 7x ≤ - 4. Graph the solution set and write it in interval notation.

Example 6: Solve $2x + 7 \le x - 11$. Graph the solution set and write it in interval notation.

Practice 6: Solve $3x + 20 \le 2x + 13$. Graph the solution set and write it in interval notation.

Example 7: Solve -5x + 7 < 2(x - 3). Graph the solution set

Practice 7: Solve 6 - 5x > 3(x - 4). Graph the solution set and write it in interval notation.

$$\frac{4-5x73x-12}{+5x-15x}$$

$$\frac{4-5x73x-12}{45x-15x}$$

$$\frac{4-12}{8} = 2 \div \frac{18}{8} \times \frac{8x}{8}$$

HW DAY ONE

Pg. 156

1 - 27 (o)