Name: \qquad Date:

Period: \qquad
3.1 Solving Quadratics by Projectile Motion CYU FOUR \square Use when you get it right all by yourself
\boldsymbol{S} Use when you did it all by yourself, but made a silly mistake
HUse when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
X Use when a question was attempted but wrong (get help)
N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Creating a table from a function	$1-7$		
Finding the vertex	$1-7$		
Max/Min \& Value	$1-7$	$5,6,7$	
Ground/Zeros	$1-7$		
Predicting specific values	$1-7$		
Explaining Why with Quadratics	$1-7$		
Graphing quadratic	$1-7$		
Changing window to match graph			

I. Fourth way: Projectile Motion.

1. An athlete can kick a football from the ground with an initial velocity of 48 feet per second. The height from the ground in feet can be found using the function $f(x)=-16 x^{2}+48 x$, where x is the time in seconds.
Create a table:

Create a graph and answer the questions:
a. What is the maximum height?
b. When does it reach its max height?
c. When does it hit the ground?
d. Where is it at 1 second?

2. A cliff diver, drops into the water from a height of 225 feet. The height from the ground in feet can be found using the function $y=-16 x^{2}+225$, where x is the time in seconds.

Create a table:

Create a graph and answer the questions:
a. What is his maximum height?
b. When does he reach his max height?
c. When does he hit the ground?
d. Where is he at 1 second?

3. A ball rolls off a roof 4 meters high. The height from the roof can be found using the function $f(x)=-4.9 x^{2}+4$, where x is the time in seconds.

Create a table:

Create a graph and answer the questions:
a. What is the maximum height?
b. When does it reach its max height?
c. When does it hit the ground?
d. Where is it at 1 second?

4

3

2

1

0
4. A golf ball is hit from the ground with an initial velocity of 39.2 meters per second. The height from the ground in meters can be found using the function $f(x)=-4.9 x^{2}+39.2 x$, where x is the time in seconds.
Create a table:

Create a graph and answer the questions:
a. What is the maximum height?
b. When does it reach its max height?
c. When does it hit the ground?
d. What is the height at 2 seconds?

A soccer ball is kicked from the ground with
5. an initial velocity of 49 meters per second. The height from the ground in meters can be found using the equation $y=-4.9 x^{2}+49 x$, where x is the time in seconds.
Create a table:

a. What is the maximum height?
b. When does it reach its max height?
c. When does it hit the ground?
d. What is the height at 3 seconds and 7 seconds? Why is it the same?

6. A flare is launched from a life raft with an initial velocity of 144 feet per second. The height from the ground in feet, h, can be found using the function $h(t)=-16 t^{2}+144 t+0$, where t is the time in seconds.
Create a table:

Create a graph and answer the questions:
a. What is the maximum height?
b. When does it reach its max height?

c. When does it hit the ground?
7. A model rocket will be launched into the ocean from a hill 80 feet above sea level. Its initial velocity is 64 feet per second. The rocket's distance s, above sea level at any time, t, is found by the equation $s=-16 t^{2}+64 t+80$. Create a table:

a. What is the maximum height?
b. When does it reach its max height?
c. When does it hit the ground?

d. What is its height at 1 and 3 seconds? Why is it the same?

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

