3.

In Exercises 1 and 2, determine whether the graph represents a *linear* or *nonlinear* function. Explain.

24

20

14

24

34

16

44

12

In Exercises 3 and 4, determine whether the table represents a *linear* or *nonlinear* function. Explain.

x	0	2	4	6
у	3	9	27	81

In Exercises 5–8, determine whether the equation represents a *linear* or *nonlinear* function. Explain.

5.
$$y - \frac{1}{3}x = 4x - 7$$

6. $6 - \frac{2}{5}x = 3y + 8x$
7. $(y + 2)(y - 4) = 3x$
8. $4x - 5y + 2xy = 0$

In Exercises 9 and 10, determine whether the domain is *discrete* or *continuous*. Explain.

9.	Input Months, <i>x</i>		2	3	10.	Input Tickets, <i>x</i>	10	20	30
	Output Height of basil plant (inches), <i>y</i>	3	7	11		Output Cost (dollars), <i>y</i>	60	120	180

In Exercises 11–13, evaluate the function when x = -2, 0, and 5.

11.
$$f(x) = 1.5x + 1$$
 12. $g(x) = 11 - 3x + 2$ **13.** $h(x) = -3 - x - 2$

Let g(x) be the percent of your friends with a landline phone x years after 2000.
 Explain the meaning of each statement.

a.
$$g(0) = 100$$
 b. $g(5) = g(6)$

c.
$$g(10) = m$$
 d. $g(11) > g(12)$

In Exercises 15–18, find the value of x so that the function has the given value.

15.
$$f(x) = 8x - 7; f(x) = 17$$

16. $g(x) = -4x + 7; g(x) = 27$

17.
$$f(x) = \frac{1}{3}x - 1; f(x) = 9$$

18. $h(x) = 6 - \frac{2}{3}x; h(x) = -2$

In Exercises 19 and 20, find the value of x so that f(x) = 7.

23. v(x) = -5 + 2x

4

20.

In Exercises 21–24, graph the linear functions on the graph provided. Label each function.

21.
$$h(x) = -\frac{3}{2}x + 4$$
 22. $p(x) = \frac{1}{4}x - 1$

24.
$$k(x) = 4 - 3x$$

25. The function C(x) = 35x + 75 represents the labor cost (in dollars) for Bob's

Auto Repair to replace your alternator, where x is the number of hours. The table shows sample labor costs from its main competitor, Budget Auto Repair. The alternator is estimated to take 5 hours of labor. Which company would you hire? Explain.

Hours	1	2	3	
Cost	\$90	\$130	\$170	