Agree/Disagree Reading- Equations of Lines

Put A in the blank if you agree with the statement. Put D if you disagree. After you have answered all the questions, turn the paper over and read the back, then check your answers.
\qquad 1. Equations of lines have 2 variables.
\qquad 2. A ordered pair represents a line on a coordinate plane.

_3. The x-axis is the vertical axis.

\qquad 4. The x-coordinate comes first in an ordered pair.
\qquad 5. The slope intercept form of an equation of a line is $y=m x+b$
__6. m represents the steepness of the line.
\qquad 7. Slope is change in y over change in x. \qquad .or rise over run.
\qquad 8. b is the y intercept or $(b, 0)$
\qquad 9. Parallel lines have the same equations.
\qquad 10. Perpendicular lines have slopes that are negative reciprocals.
___11. You need slope and y-intercept to write the equation of a line.
\qquad 12. Point slope form of an equations of a line is $y-y_{1}=m\left(x-x_{1}\right)$
\qquad 13. If you have a point on the line and the slope, then you can find the equation of a line.
\qquad 14. If a line is vertical, then the slope is zero.
\qquad 15. If the equation of a line is $y=5$, then the slope is zero.
\qquad 16. Parallel lines have slopes that are negative reciprocals.
___17. Perpendicular lines have slopes that are negative reciprocals.

Equations of Lines

A line can is graphed on a coordinate plane and can represent many different real life situations. To identify a line we use an equation of the line. The equation of the line represents the set of all points (x, y) that lie on the line. There are infinitely many ordered pairs that satisfy the equation and are on the line. An equation of a line has two variables.

There are several different forms of an equation of a line. First is $\mathbf{y = m} \mathbf{m + b}$ which is slope intercept. It is the easiest to use because you can see the slope and y intercept just by looking at the equation. M is the slope and b is the y intercept. The y-intercept is the place where the line crosses the y axis --- ($0, \mathrm{~b}$). The second form is point-slope, $\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right)$ where m is the slope and (x_{1}, y_{1}) is a point on the line (not necessarily the y intercept). All you need to have to find the equation of a line is the slope and one point on the line, then you can use point-slope form! The third form of equation is $\mathbf{A x}+\mathbf{B y}=\mathbf{C}$ and is called standard form.

Slope is the steepness of a line and is a ratio of the rise to the run of a line. It is calculated by change in y over change is x or $\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right)$. The steeper the line is, the larger the slope. If a line is horizontal, then the slope is zero and if a line is vertical, then the slope is undefined. Horizontal lines always have an equation $y=b$, where " b " is the y-coordinate of every point on the line. If you list the ordered pairs that are on a horizontal line, then the y coordinates will always be the same. Vertical lines have equations $\mathrm{x}=\mathrm{a}$, where " a " is the x coordinate of every point on the line. All points on a vertical line have the same x-coordinate.

Parallel lines have the same slope but different y intercepts. The slopes are the same because they have the same steepness. Perpendicular lines have slopes that are negative reciprocals. That means that if one line has a slope of $2 / 3$ then the line perpendicular has a slope of $-3 / 2$.

