Name: _

Date:

Period:

4.1 Graphing Polynomial Functions CYU

Use when you get it right all by yourself

 ${m {\it S}}$ Use when you did it all by yourself, but made a silly mistake

 \emph{H} Use when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

 \emph{X} Use when a question was attempted but wrong (get help)

₿Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Polynomial function?	1 - 4	9 - 14	
Degree: Odd/Even	1 - 4	9 - 14	
Leading Coefficient (LC): Positive/Negative	1 - 4	9 - 14	
Standard form: Name	1 - 4	9 - 14	
Evaluating Polynomial Functions	5 - 8		
Describing end behavior		9,10	
Graphing Polynomial Functions		11 - 14	

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

1.
$$f(x) = 9x^4 + 8x^3 - 6x^{-2} + 2x$$

2. $g(x) = \sqrt{3} - 12x + 13x^2$

3. m(x) = -3x + 5x³ - 6x² + 2
4.
$$p(x) = \frac{1}{2}x^2 + 3x - 4x^3 + 6x^4 - 1$$

Evaluate the function for the given value of x. Show all work to earn full credit.

5.
$$h(x) = -3x^4 + 2x^3 - 12x - 6$$
; $x = -2$
6. $g(x) = x^6 - 64x^4 + x^2 - 7x - 51$; $x = 8$

7.
$$g(x) = -x^3 + 3x^2 + 5x + 1$$
; $g(-12)$
8. $h(x) = 5x^3 - 3x^2 + 2x + 4$; $h\left(-\frac{1}{3}\right)$

Describe the end behavior of the graph of the function without graphing. Use proper language.

9.
$$f(x) = -2x^4 + 12x^8 + 17 + 15x^2$$

10. $f(x) = 11 - 18x^2 - 5x^5 - 12x^4 - 2x$

Graph the polynomial function. State the degree (odd/even), LC (pos/neg), y-intercept, roots, & max/min.

- 15. **MODELING WITH MATHEMATICS** From 1980 to 2007 the number of drive-in theaters in the United States can be modeled by the function $d(t) = -0.141t^3 + 9.64t^2 232.5t + 2421$, where d(t) is the number of open theaters and t is the number of years after 1980.
 - a) Use a graphing calculator to graph the function for the interval $0 \le t \le 27$. Describe the behavior of the graph on this interval.
 - b) What is the average rate of change in the number of drive-in movie theaters from 1980 to 1995 and from 1995 to 2007? Interpret the average rates of change.
 - c) Do you think this model can be used for years before 1908 or after 2007? Explain.

