4.2 Reflections

Flip or mirror image

A <u>reflection</u> is a transformation that uses a line like a mirror to reflect a figure. The mirror line is called the line of reflection.

Examples: Reflecting over Horizontal & Vertical Lines

Graph $\triangle ABC$ with vertices A(1, 3), B(5, 2), and C(2, 1) and its image after the reflections described.

1. over the line: x = 32. Over the line: y = 1

Pull

Practice

Graph $\triangle ABC$ with vertices A(1, 3), B(5, 2), and C(2, 1) and its image after the reflections described.

Coordinate Rules for Reflections

- If (a, b) is reflected in the x-axis, then its image is the point (a, -b).
- If (a, b) is reflected in the y-axis, then its image is the point (-a, b).
- If (a, b) is reflected in the line y = x, then its image is the point (b, a).
- If (a, b) is reflected in the line y = -x, then its image is the point (-b, -a).

Example: Reflecting over an Axis or Diagonal Line

Practice:

The vertices of ΔJKL are J(1, 3), K(4, 4), and L(3, 1).

Graph the new image with reflections over the ...

Identifying Lines of Symmetry

A figure in the plane has <u>line symmetry</u> when the figure can be mapped onto itself by a reflection in a line. This line of reflection is a <u>line of symmetry</u>, such as a line *m* below. A figure can have more than one line of symmetry.

ACT Practice:

What is $\frac{1}{9}$ of 63% of \$6,000?

A. \$34,020

B. \$4,200

C. \$3,402

D. \$420

E. \$42

$$\frac{1}{9}(.63)(6000)$$
 $\frac{1}{9}(.63)(6000)$
 $\frac{1}{9}(.63)(6000)$
 $\frac{1}{9}(.63)(6000)$
 $\frac{1}{9}(.63)(6000)$
 $\frac{1}{9}(.63)(6000)$

HW. pg. 186: 3 - 25 (o), 40 - 49

4.2 WS Directions:

Graph the pre-image and image.

Write the final image coordinates down correctly.