Name: \qquad Date:

Period: \qquad
4.6 The Fundamental Theorem of Algebra DAY TWO CYU
\square Use when you get it right all by yourself
\boldsymbol{S} Use when you did it all by yourself, but made a silly mistake
HUse when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
X Use when a question was attempted but wrong (get help)
N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Rational Root Theorem		1,2	
Graphing polynomials on the calculator to sketch		1,2	
Long/synthetic division		1,2	
Factoring polynomials		1,2	
Solving polynomial equations		1,2	
Descartes' Rule of Signs: chart/table		7,8	$4-6$
Writing polynomial functions of least degree		3	
Error Analysis with polynomials			

Find all zeros of the polynomial function using the 5 steps from your notes. Show all 5 steps to earn full credit.

1. $g(x)=x^{4}+4 x^{3}+7 x^{2}+16 x+12$
2. $f(x)=x^{5}-20 x^{3}+20 x^{2}-21 x+20$
3. REASONING: Two zeros of $f(x)=x^{3}-6 x^{2}-16 x+96$ are 4 and -4 . Explain why the third zero must also be a real number.

Using Descartes' Rule of Signs: Determine the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for the functions provided. Create a chart as your answer. Show all work for full credit.
4. $g(x)=x^{4}-x^{2}-6$
5. $g(x)=-x^{3}+5 x^{2}+12$
6. $g(x)=x^{7}+4 x^{4}-10 x+25$

Multiple Choice: REASONING \& USING STRUCTURE

7. Which is NOT a possible classification of zeros for $f(x)=x^{5}-4 x^{3}+6 x^{2}+2 x-6$?
A. Three positive real zeros, two negative real zeros, \& zero imaginary zeros
B. Three positive real zeros, zero negative real zeros, \& two imaginary zeros
C. One positive real zero, four negative real zeros, \& zero imaginary zeros
D. One positive real zero, two negative real zeros, \& two imaginary zeros
8. Use Descartes's Rule of Signs to determine which function has at least 1 positive real zero.
A. $f(x)=x^{4}+2 x^{3}-9 x^{2}-2 x-8$
B. $f(x)=x^{4}+4 x^{3}+8 x^{2}+16 x+16$
C. $f(x)=-x^{4}-5 x^{2}-4$
D. $f(x)=x^{4}+4 x^{3}+7 x^{2}+12 x+12$
9. MODELING WITH MATHEMATICS: Over a period of 14 years, the number N of inland lakes infested with zebra mussels in a certain state can be modeled by $N=-0.0284 x^{4}+0.5937 x^{3}-2.464 x^{2}+8.33 x-2.5$ where x is time (in years). In which year did the number of infested inland lakes first reach 120? (HINT: If you use your calculator to find the exact answer, then explain in words what you did to earn you work credit.)

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

