Name: ____

Date: _____

5.2 Congruent Polygons CYU

☑ Use when you get it right all by yourself

 ${m {\it S}}$ Use when you did it all by yourself, but made a silly mistake

 \emph{H} Use when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

 \pmb{X} Use when a question was attempted but wrong (get help)

₿Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Identifying congruent corresponding parts	1	2	8, 9, 10
Writing congruence statements	1	2	
Solving for variables using corresponding parts	3	4	4
Proving & Explaining polygons are congruent	5	8	9,10
Third Angles Theorem	6	7, 8	7, 9
Segment Bisector	8		
Definition of midpoint	8		
Vertical Angles	8		9
AIA, AEA, SSIA, SSEA, Corresponding Angles	8		
Congruent segments/angles	8		9,10
Definition of Isosceles Triangles			9, 10

Identify all pairs of congruent corresponding parts. Then write another congruence statement for the polygons.

1. $\triangle ABC \cong \triangle DEF$

Find the values of x and y.

Show that the polygons are congruent. Explain your reasoning in a complete sentence.

Find the measure of angle one.

8. **PROOF ON A SEPARATE PAPER:** Triangular postage stamps, like the ones shown, are highly valued by stamp collectors. Prove that $\triangle AEB \cong \triangle CED$.

Given: $\overline{AB} \mid\mid \overline{DC}, \overline{AB} \cong \overline{DC}, E$ is the midpoint of $\overline{AC} \otimes \overline{BD}$.

Prove:
$$\Delta AEB \cong \Delta DCF$$

9. **PROOF ON A SEPARATE PAPER:** Use the information in the figure to prove that $\triangle ABG \cong \triangle DCF$.

G

10. In the diagram, ABEF \cong CDEF.

- a) Explain how you know that $\overline{BE} \cong \overline{DE} \& \angle ABE \cong \angle CDE$.
- b) Explain how you know that $\angle GBE \cong \angle GDE$.
- c) Explain how you know that $\angle GEB \cong \angle GED$.
- d) Do you have enough information to prove that $\Delta BEG \cong \Delta DEG$? Explain

Use the given information to write and solve a system of linear equations to find the values of x and y.

11. $\Delta LMN \cong \Delta PQR, m \perp L = 40^{\circ}, m \perp M = 90^{\circ}, m \perp P = (17x - y)^{\circ}, m \perp R = (2x + 4y)^{\circ}$

12.
$$\Delta STU \cong \Delta XYZ, m \angle T = 28^{\circ}, m \angle U = (4x + y)^{\circ}, m \angle X = 130^{\circ}, m \angle Y = (8x - 6y)^{\circ}$$

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

