Domain Restriction Practice WS

REMINDER: 3 rules when domain restriction is necessary.

- 1. Denominators cannot equal zero. So, set the denominator ≠ 0 and solve. If a quadratic or higher degreed function factor first and set each factor ≠ 0. It can be more than one number that is restricted.
- 2. Since the even root of a negative number creates imaginary numbers we need to ensure that any even rooted radicand is ≥ 0 . This guarantees any radicand will not be negative.
- 3. This situation is a combination of the first two rules. When the first two rules are combined you cannot have a negative under a radical and you cannot have a value of zero in the denominator. So, we combine the two methods and set the denominator > 0 because it cannot be negative and it can no longer = 0.

Determine the domain for each function provided. Remember the rules above as well as real-world restrictions when applicable.

$$f(x) = 3x^2 - 4$$

No Rule appliès.

D: (-\alpha, \alpha)

 $2. h(x) = \frac{2x+1}{x-1}$ Rule # 1

 $X-1\neq 0$ $+1\neq 1$ $Y\neq 1$ $Y\neq 1$ $Y\neq 1$

3. $g(x) = \sqrt{2x-5}$ Rule #2

2x-\$ >0

4. $z(x) = \sqrt[3]{10x - 2}$ No Rule applies (odd $\sqrt{}$)

X ≥ 5 5. $w(x) = \frac{3}{x} + \frac{3}{x-1} + \frac{3}{x+1}$ Rule #

D: (- 0, -1) U(-1,0) U(0,1) U(1,0)

X>-

6. $m(x) = \frac{\sqrt{1-x}}{\sqrt{1+x}}$ Rule # 3

7.
$$n(x) = \sqrt{x^2 - 5x + 6}$$
 Rule #2 = $\sqrt{(x-3)(x-2)}$

$$\begin{array}{cccc} \hline \text{D:} [3,\infty) & \text{X-}3 \geq 0 & \text{X-}220 \\ & \text{X} \geq 3 & \text{X} \geq 2 \end{array}$$

9.
$$v(t) = 1000 - \frac{1}{2}(-32.2)t^2$$

No Rule applies.

8.
$$c(x) = \frac{1}{x^2 - 8x + 12}$$
. Rule #1
$$(x-b)(x-2)$$

X-6+0 X-2+0 $x \neq b$ $D: (-\alpha, 2) \cup (2,6) \cup (6, \infty)$

10. In the previous problem, if the function represents real-time velocity of an object t seconds after launch, how does that change the domain restriction?

only positive values D: 0,00)

11.
$$j(x) = \sqrt{\frac{x-2}{x+3}}$$
 Rule #3
$$= \sqrt{\frac{x-2}{x+3}} \quad x+3>0$$

$$= \sqrt{\frac{x-2}{x+3}} \quad x>-3$$

$$D: (-3,\infty)$$

13.
$$k(x) = \sqrt[5]{\frac{x}{x-1}}$$
 Rule # | $\sqrt[5]{x}$ (odd $\sqrt[5]{x-1}$)
$$\sqrt[5]{x-1}$$
 $x-1\neq 0$

D: (-0,1) U(1,00)

15.
$$p(x) = \sqrt{\frac{x^2-1}{x^2-4}}$$
 Rule #3

= $\frac{\sqrt{x^2-1}}{\sqrt{x^2-4}}$ D: $(2,\infty)$
 $x^2-4>0$
 $x^2>4$
 $x>\pm 2$

12.
$$f(x) = \frac{(2x+3)(x-3)}{(2x+3)} = x-3$$
 with hole
 $2x + 3 \neq 0$
 $2x \neq -3$
 $x \neq -\frac{3}{2}$ D: $(-\alpha, -\frac{3}{2}) \cup (\frac{3}{2}, \infty)$

14.
$$q(x) = \sqrt{x^3 + 4x^2 - 4x - 16}$$
 Rule #2
 $\sqrt{x^2(x+4) - 4(x+4)}$ Rule #2
 $\sqrt{(x^2-4)(x+4)}$
 $\sqrt{(x+2)(x-2)(x+4)}$
 $x+2 \ge 0$ $x-2 \ge 0$ $x+4 \ge 0$
 $x \ge -2$ $x \ge +2$ $x \ge -4$
 $\sqrt{(x+2)(x-2)(x+4)}$