Name	

5.3 Graphing Radical Functions CYU

Date

Pd

Use when you get it right all by yourself

 ${m {\it S}}$ Use when you did it all by yourself, but made a silly mistake

 ${\it H}$ Use when you could do it alone with a little help from teacher or peer

 \pmb{G} Use when you completed the problem in a group

 \pmb{X} Use when a question was attempted but wrong (get help)

 $\pmb{\mathsf{N}}$ Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Graphing radicals	1	2	3
Domain and range in interval notation	1 - 3		
Describing radical transformations	4	5	6, 7
Writing rules for transformations	9	10	8, 11, 12

Graph the function. Identify the domain and range in interval notation of the function.

Describe the transformation of f represented by g. Then graph each function.

4. $f(x) = \sqrt{x}, g(x) = \sqrt{x+1} + 8$ 5. $f(x) = \sqrt[3]{x}, g(x) = \sqrt[3]{x+4} - 5$

6.
$$f(x) = x^{\frac{1}{3}}, g(x) = \frac{1}{2}x^{\frac{1}{3}} + 6$$

7. $f(x) = \sqrt[5]{x}, g(x) = \sqrt[5]{-32x} + 3$

8. **PROBLEM SOLVING** The distance (in miles) a pilot can see to the horizon can be approximated by $E(n) = 1.22\sqrt{n}$, where n is the plane's altitude (in feet above sea level) on Earth. The function M(n) = 0.75E(n)approximates the distance a pilot can see to the horizon n feet above the surface of Mars. Write a rule for M. What is the distance a pilot

can see to the horizon from an altitude of 10,000 feet above Mars?

Write a rule for g described by the transformations of the graph of f.

- 9. Let g be a vertical stretch by a factor of 2, followed by a translation 2 units up of the graph of $f(x) = \sqrt{x} + 3$.
- 10. Let g be a reflection over the y-axis, followed by a translation 1 unit right of the graph of $f(x) = 2\sqrt[3]{x-1}$.
- 11. Let g be a horizontal compression by a factor of $\frac{2}{3}$, followed by a translation 4 units left of the graph of $f(x) = \sqrt{6x}$.

12. Let g be a translation 1 unit down and 5 units right, followed by a reflection over the x-axis of the graph of $f(x) = -\frac{1}{2}\sqrt[4]{x} + \frac{3}{2}$.

