Name $\qquad$ Date $\qquad$ Pd $\qquad$

### 5.3 Graphing Radical Functions CYU

$\square$ Use when you get it right all by yourself $\boldsymbol{S}$ Use when you did it all by yourself, but made a silly mistake $\boldsymbol{H}$ Use when you could do it alone with a little help from teacher or peer
$\boldsymbol{G}$ Use when you completed the problem in a group
$X$ Use when a question was attempted but wrong (get help)
$N$ Use when a question was not even attempted

| CONCEPTS | BASIC | INTERMEDIATE | ADVANCED |
| :--- | :---: | :---: | :---: |
| Graphing radicals | 1 | 2 | 3 |
| Domain and range in interval notation | $1-3$ |  |  |
| Describing radical transformations | 4 | 5 | 6,7 |
| Writing rules for transformations | 9 | 10 | $8,11,12$ |

Graph the function. Identify the domain and range in interval notation of the function.

1. $g(x)=-\sqrt[3]{2 x}$

2. $f(x)=\frac{1}{2} \sqrt[3]{x+6}$

3. $g(x)=-3(x+1)^{\frac{1}{3}}$


Describe the transformation off represented by $g$. Then graph each function.
4. $f(x)=\sqrt{x}, g(x)=\sqrt{x+1}+8$
5. $f(x)=\sqrt[3]{x}, g(x)=\sqrt[3]{x+4}-5$
6. $f(x)=x^{\frac{1}{3}}, g(x)=\frac{1}{3} x^{\frac{1}{3}}+6$
7. $f(x)=\sqrt[5]{x}, g(x)=\sqrt[5]{-32 x}+3$
8. PROBLEM SOLVING The distance (in miles) a pilot can see to the horizon can be approximated by $E(n)=1.22 \sqrt{n}$, where n is the plane's altitude (in feet above sea level) on Earth. The function $M(n)=0.75 E(n)$ approximates the distance a pilot can see to the horizon n feet above the surface of Mars.
 Write a rule for M . What is the distance a pilot can see to the horizon from an altitude of 10,000 feet above Mars?

Write a rule for $g$ described by the transformations of the graph of $f$.
9. Let g be a vertical stretch by a factor of 2 , followed by a translation 2 units up of the graph of $f(x)=\sqrt{x}+3$.
10. Let g be a reflection over the y -axis, followed by a translation 1 unit right of the graph of $f(x)=$ $2 \sqrt[3]{x-1}$.
11. Let g be a horizontal compression by a factor of $\frac{2}{3}$, followed by a translation 4 units left of the graph of $f(x)=\sqrt{6 x}$.
12. Let g be a translation 1 unit down and 5 units right, followed by a reflection over the x -axis of the graph of $f(x)=-\frac{1}{2} \sqrt[4]{x}+\frac{3}{2}$.

CYU Reflection: How far can you go: basic, intermediate, or advanced?

## Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.


