S Use when you did it all by yourself, but made a silly mistake

H Use when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

| CONCEPTS                      | BASIC   | INTERMEDIATE | ADVANCED     |
|-------------------------------|---------|--------------|--------------|
| Included angles               | 1 - 3   | - 1 LAN      |              |
| SAS Congruence Theorem        | 4, 5, 8 | 6, 7, 9      | 图 學 更 近 [ 公下 |
| Triangle Congruence Statement | 12      | 13           | E The        |
| SAS Proofs                    | 10      | 11           | 14           |

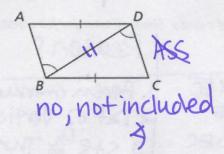
Name the included angle between the pair of sides given.

1. *JK* & *KL* 

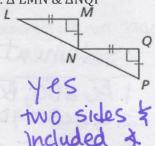
2. PK & KL

3. <u>LP</u> & <u>KL</u>

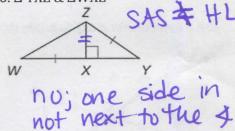
1


4JKL

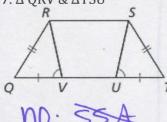
4 PKL


4KLP

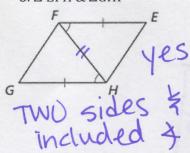
Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Theorem. Explain.


4. Δ ABD & ΔCDB

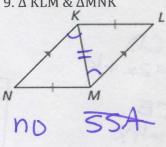



5. Δ LMN & ΔNQP




6. A YXZ & AWXZ



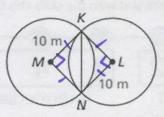

7. Δ QRV & ΔTSU



8. Δ EFH & ΔGHF



9. A KLM & AMNK

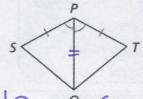



Use the given information to name two triangles that are congruent. Explain your reasoning.

10.  $\angle SRT \cong \angle URT$ , and R is the center of

the circle.

△SRT≌ DURT Reflexive Radius Definition 11.  $\overline{MK} \perp \overline{MN}, \overline{KL} \perp \overline{NL},$  and M and L are centers of circles.




ANMK≅ ANLK Radius Def. 1 → R+ 4's

 $L \rightarrow R+4's$ SAS THM 10. Given  $\overline{PQ}$  bisects  $\angle SPT, \overline{SP} \cong \overline{TP}$ 

Prove  $\triangle SPQ \cong \triangle TPQ$ 

11. Given  $\overline{AB} \cong \overline{CD}, \overline{AB} \parallel \overline{CD}$ Prove  $\triangle ABC \cong \triangle CDA$ 



Reasons Statements

1. SP = TP. PG bosed 1. given

2. PQ=PQ

3. LSPQ = LTPQ 4. USPQ = ATPQ

2. Reflexive Property of =

3. Def 17 4 bisector

4. SAS = Tum

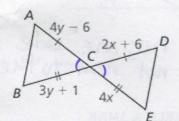
Statements I. AB = CO; AB //CD

2. AC = AC

3. 41=42

4. DABC = DCDA

Reasons


1. Gren 2. Reflexing POC

3 AIA THM

4. SAS = Thim

Use a two-column proof to prove that  $\triangle$  ABC  $\cong$   $\triangle$ DEC. Then find the values of x and y. Show all work for full credit.

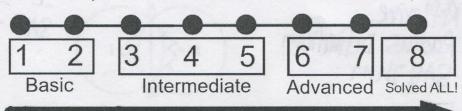
14.



Statements 1. AC = DC; BC= EC 2. 4 ACB= ADCE

3 DABC = DDEC

Reasons


1. Given (marked)

AC=CD 44-6=2x+6 BC=CE 34+1 =4X

CYU Reflection: How far can you go: basic, intermediate, or advanced?

## Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

