Name: \qquad Date: \qquad Period: \qquad

5.3 Proving Triangles Congruent by SAS CYU

\square Use when you get it right all by yourself
\boldsymbol{S} Use when you did it all by yourself, but made a silly mistake
HUse when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
X Use when a question was attempted but wrong (get help)
N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADV ANCED
Included angles	$1-3$		
SAS Congruence Theorem	$4,5,8$	$6,7,9$	
Triangle Congruence Statement	12	13	
SAS Proofs	10	11	14

Name the included angle between the pair of sides given.

Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Theorem. Explain.
4. $\Delta \mathrm{ABD} \& \Delta \mathrm{CDB}$

6. $\Delta \mathrm{YXZ} \& \Delta \mathrm{WXZ}$

1. $\overline{J K} \& \overline{K L}$
2. $\overline{P K} \& \overline{K L}$
3. $\overline{L P} \& \overline{K L}$

Use the given information to name two triangles that are congruent. Explain your reasoning.
10. $\angle S R T \cong \angle U R T$, and R is the center of the circle.

11. $\overline{M K} \perp \overline{M N}, \overline{K L} \perp \overline{N L}$, and M and L are centers of circles.

Write a two-column proof.
10. Given $\overline{P Q}$ bisects $\angle S P T, \overline{S P} \cong \overline{T P}$

Prove $\triangle S P Q \cong \triangle T P Q$

11. Given $\overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$

Prove $\triangle A B C \cong \triangle C D A$

Use a two-column proof to prove that $\triangle A B C \cong \triangle D E C$. Then find the values of x and y. Show all work for full credit.
14.

Rate your mastery leve!!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

