Name: $\qquad$ Date: $\qquad$ Period: $\qquad$
5.4 Isosceles \& Equilateral Triangles CYU
$\square$ Use when you get it right all by yourself
S Use when you did it all by yourself, but made a silly mistake
HUse when you could do it alone with a little help from teacher or peer
$G$ Use when you completed the problem in a group
$X$ Use when a question was attempted but wrong (get help)
$N$ Use when a question was not even attempted

| CONCEPTS | BASIC | INTERMEDIATE | ADV ANCED |
| :--- | :---: | :---: | :---: |
| Completing Congruence Statements | 1,2 |  |  |
| Determining AAS, SAS, ASA, HL, SSS | 1,2 |  | 12 |
| Equilateral Triangles | 3,4 | $6,7,10$ | 13 |
| Isosceles Triangles | 5 | $6,7,9$ | $8,11,12$ |
| Perimeter | 9,10 |  |  |

Complete the statement. State which theorem you used. Be sure to mark your diagram.

1. If $\angle D \cong \angle C E D$, then $\qquad$ $\cong$ $\qquad$ .
2. If $\angle E B C \cong \angle E C B$, then $\qquad$ $\cong$ $\qquad$ .


Find the value of $x$.
3.

4.

5. MODELING WITH MATHEMATICS The dimensions of a sports pennant are given in the diagram. Find the values of $x$ and $y$.


Find the values of $x$ and $y$.
6.

7.

8. REASONING The base of isosceles $\Delta X Y Z$ is $\overline{Y Z}$. What can you prove? Select all that apply.
A) $\overline{X Y} \cong \overline{X Z}$
B) $\angle X \cong \angle Y$
C) $\angle Y \cong \angle Z$
D) $\overline{Y Z} \cong \overline{Z X}$

Find the perimeter of the triangle.
9.

10.
$(21-x)$ in.

11. PROBLEM SOLVING The triangular faces of the peaks on a roof are congruent isosceles triangles with vertex angles U and V .
a) Name two angles congruent to $\angle W U X$. Explain your reasoning.
b) Find the distance between points U and V .

12. HOW DO YOU SEE IT? You are designing fabric purses to sell at the school fair.
a) Explain why $\triangle \mathrm{ABE} \cong \triangle \mathrm{DCE}$.
b) Name the isosceles triangles in the purse.

13. PROOF Using a two-column proof, use the diagram to prove that $\triangle D E F$ is equilateral.


Given $\triangle A B C$ is equilateral.

$$
\angle C A D \cong \angle A B E \cong \angle B C F
$$

Prove $\triangle D E F$ is equilateral.

## Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.


