Name

5.4 Solving Radical Equations & Inequalities CYU

Date

🗹 Use when you get it right all by yourself

 ${m {\it S}}$ Use when you did it all by yourself, but made a silly mistake

 $\textit{\textbf{H}}$ Use when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

 \emph{X} Use when a question was attempted but wrong (get help)

 $\emph{\textbf{N}}$ Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Solving radical equations	1	2	3, 6
Checking solutions	1 - 3	6 - 11	
Real-world application	4	5	4
Solving equations with two radicals		7	8
Solving equations with rational exponents	9	10	11
Solving radical inequalities	12	13	14

Solve the equation. Check your solution.

1.
$$\sqrt[3]{x-16} = 2$$

2. $\sqrt[3]{x} - 10 = -7$
3. $\sqrt{2x} - \frac{2}{3} = 0$

4. **MODELING WITH MATHEMATICS** Biologists have discovered that the shoulder height h (in centimeters) of a male Asian elephant can be modeled by $h = 62.5\sqrt[3]{t} + 75.8$, where t is the age (in years) of the elephant. Determine the age of an elephant with a shoulder height of 250 centimeters.

5. **MODELING WITH MATHEMATICS** In an amusement park ride, a rider suspended by cables swings back and forth from a tower. The maximum speed v (in meters per second) of the rider can be approximated by $v = \sqrt{2gh}$, where h is the height (in meters) at the top of each swing and g is the acceleration due to gravity (g \approx 9.8 m/sec²). Determine the height at the top of the swing of a rider whose maximum speed is 15 meters per second.

Pd

Solve the equation. Check your solution.

6.
$$\sqrt{44 - 2x} = x - 10$$

7. $\sqrt{3x - 3} - \sqrt{x + 12} = 0$
8. $\sqrt{x + 2} = 2 - \sqrt{x}$

Solve the equation. Check your solution.

9.
$$2x^{\frac{2}{3}} = 8$$
 10. $(5-x)^{\frac{1}{2}} - 2x = 0$ 11. $(5x^2 - 4)^{\frac{1}{4}} = x$

Solve the inequality.

12. $2\sqrt{x} + 3 \le 8$	13. $\sqrt[3]{x+7} \ge 3$	$140.25\sqrt{x} - 6 \le -3$

