5.4 Solving Radical Equations & Inequalities CYU

☑ Use when you get it right all by yourself

 ${\cal S}$ Use when you did it all by yourself, but made a silly mistake ${\it H}$ Use when you could do it alone with a little help from teacher or peer

6 Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Solving radical equations	1	2	3, 6
Checking solutions	1 - 3	6 - 11	
Real-world application	4	5	4
Solving equations with two radicals		7	8
Solving equations with rational exponents	9	10	11
Solving radical inequalities	12	13	14

Solve the equation. Check your solution.

1.
$$\sqrt[3]{x-16} = 2$$

$$2. \sqrt[3]{x} - 10 = -7$$

$$X = 27$$

$$3. \sqrt{2x} - \frac{2}{3} = 0$$

$$X = \frac{2}{9}$$

4. **MODELING WITH MATHEMATICS** Biologists have discovered that the shoulder height h (in centimeters) of a male Asian elephant can be modeled by $h = 62.5\sqrt[3]{t} + 75.8$, where t is the age (in years) of the elephant. Determine the age of an elephant with a shoulder height of 250 centimeters.

≈ 21.7 years

5. MODELING WITH MATHEMATICS In an amusement park ride, a rider suspended by cables swings back and forth from a tower. The maximum speed v (in meters per second) of the rider can be approximated by $v = \sqrt{2gh}$, where h is the height (in meters) at the top of each swing and g is the acceleration due to gravity (g \approx 9.8 m/sec²). Determine the height at the top of the swing of a rider whose maximum speed is 15 meters per second.

211.5 m

Solve the equation. Check your solution.

$$6.\sqrt{44 - 2x} = x - 10$$

$$7.\sqrt{3x-3} - \sqrt{x+12} = 0$$

8.
$$\sqrt{x+2} = 2 - \sqrt{x}$$

$$X = 7.5$$

$$X = \frac{1}{4}$$
 or 0.25

Solve the equation. Check your solution.

$$9.\ 2x^{\frac{2}{3}} = 8$$

$$10. (5-x)^{\frac{1}{2}} - 2x = 0$$

11.
$$(5x^2 - 4)^{\frac{1}{4}} = x$$

Solve the inequality.

12.
$$2\sqrt{x} + 3 \le 8$$

13.
$$\sqrt[3]{x+7} \ge 3$$

$$14. -0.25\sqrt{x} - 6 \le -3$$

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

