5.5 Operations with Functions DAY TWO CYU

☐ Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake

#Use when you could do it alone with a little help from teacher or peer

 ${\it G}$ Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Adding Functions	5, 7		
Subtracting Functions	1, 6		
Evaluating Functions		1 - 8	
Domain of functions			1 - 8
Multiplying Functions	3, 4		
Dividing Functions	2, 8		

Perform the indicated operation. Then restrict the domain for each problem below in interval notation. Finally evaluate for the given x value.

1.
$$g(x) = -x^2 - 1 - 2x$$

$$f(x) = x + 5$$

(g-f)(x) and when x=7.

$$\chi^{2} + 3\chi + 6$$
 (7,76)

$$2. \quad f(x) = 3x - 1$$

$$g(x) = x^2 - x$$

$$\left(\frac{f}{g}\right)(x)$$
 and when x = -3.

$$\frac{3x-1}{x^2-x} \text{ or } \frac{3x-1}{x(x-1)} \qquad (-3, -\frac{5}{6})$$

$$D: (-9,0) \cup (0,1) \cup (1,\infty)$$

$$(-3, -\frac{5}{6})$$

$$3. \quad f(x) = 2x^3 - 5x^2$$

$$g(x) = 2x - 1$$

 $(f \cdot g)(x)$ and when x = 0.

4.
$$g(x) = 2x + 5$$

 $f(x) = -x^2 + 5$
Find $(g + f)(x)$ and when $x = -2$.
 $-\chi^2 + 2\chi + 10$ or $-(\chi^2 - 2\chi - 10)$
 $b: (-\infty, \infty)$ $(-2, 2)$

5.
$$f(x) = 4x - 3$$

 $g(x) = x^3 + 2$
Find $(f-g)(x)$ and when $x = 4$.
 $- x^3 + 2x - 3$
 $D: (-\infty, \infty)$ $(4, -59)$

6.
$$h(x) = 3x + 3$$

 $g(x) = -4x + 1$
Find $(h + g)(x)$ and $(h + g)(10)$.
 $-x + 4$
 $D: (-x, \infty)$
 $(10, -6)$

7.
$$g(n) = n^2 + 4 + 2n$$

 $h(n) = -3n + 2$
 $(g \cdot h)(x) \text{ and } x = 1$
 $-3n^3 + 2n^2 - 14n + 8$
 $D: (-\infty, \infty)$
 $(1, -7)$

8.
$$g(x) = 3x + 2$$

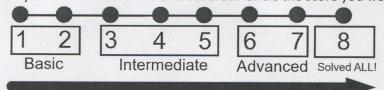
 $f(x) = 2x - 4$
Find $\left(\frac{g}{f}\right)(x)$ and when $x = 3$.

$$3x + 2$$

$$2x - 4$$

$$0$$

$$2(x - 2)$$


$$0$$

$$(3, \frac{11}{2})$$

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself

