\qquad Date \qquad Pd \qquad

5.6 Inverse Functions DAY TWO CYU

\square Use when you get it right all by yourself

Use when you did it all by yourself, but made a silly mistake
H Use when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
X Use when a question was attempted but wrong (get help)
N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Determining if functions are inverses		$1-6$	
Find the inverse of the function	7,10	8,11	9,12
Graphing functions \& inverses	10	11	12
Modeling with mathematics		13	

State if the given functions are inverses.

1. $g(x)=4-\frac{3}{2} x$
2. $\begin{aligned} f(n) & =\frac{-16+n}{4} \\ g(n) & =4 n+16\end{aligned}$
3. $g(n)=\frac{-12-2 n}{3}$
$f(n)=\frac{-5+6 n}{5}$
4. $f(n)=2(n-2)^{3}$
$g(n)=\frac{4+\sqrt[3]{4 n}}{2}$
5. $f(n)=-(n+1)^{3}$
$g(n)=3+n^{3}$
6.

$$
\begin{aligned}
& g(x)=-\frac{2}{x}-1 \\
& f(x)=-\frac{2}{x+1}
\end{aligned}
$$

Find the inverse of each function.
7. $g(x)=\frac{1}{x}-2$
8. $g(x)=\frac{7 x+18}{2}$
9. $h(x)=2 x^{3}+3$

Find the inverse of each function. Then graph the functions and its inverse. Label both.
$f(x)=-1-\frac{1}{5} x$
10.

$$
g(x)=\frac{-x-5}{3}
$$

11.
12.

$$
f(x)=-2 x^{3}+1
$$

13. MODELING WITH MATHEMATICS Elastic bands can be used for exercising to provide a range of resistance. The resistance R (in pounds) of a band can be modeled by $R=\frac{3}{8} L-5$, where L is the total length (in inches) of the stretched band. Find the inverse function. What length of the stretched band provides 19 pounds of resistance?

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

