Name

6.1 Exponential Regression DAY TWO CYU

☑ Use when you get it right all by yourself

 ${\it S}$ Use when you did it all by yourself, but made a silly mistake

H Use when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Real World Application	1 - 4		
Exponential growth vs decay	1 - 4		
Prediction		1 - 4	
Creating exponential regression	1 - 4		
Growth or Decay Rate		5 - 10	

- 1. **MODELING WITH MATHEMATICS** The value of a mountain bike y (in dollars) can be approximated by the model $y = 200(0.75)^t$, where t is the number of years since the bike was new.
 - a) Tell whether the model represents exponential growth or decay.
 - b) Identity the annual percent increase or decrease in the value of the bike.
 - c) Estimate when the value of the bike will be \$50.
- 2. **MODELING WITH MATHEMATICS** The population P (in thousands) of Austin, Texas, during a recent decade can be approximated by $y = 494.29(1.03)^{t}$, where *t* is the number of years since the beginning of the decade.
 - a) Tell whether the model represents exponential growth or decay.
 - b) Identify the annual percent increase or decrease in population.
 - c) Estimate when the population was about 590,000.
- 3. **MODELING WITH MATHEMATICS** In 2006, there were approximately 233 million cell phone subscribers in the United States. During the next 4 years, the number of cell phone subscribers increased by about 6% each year.
 - a) Write an exponential growth model giving the number of cell phone subscribers y (in millions) t years after 2006. Estimate the number of cell phone subscribers in 2008.
 - b) Estimate the year when the number of cell phone subscribers was about 278 million.

Pd

Date

- 4. **MODELING WITH MATHEMATICS** You take a 325 milligram dosage of ibuprofen. During each subsequent hour, the amount of medication in your bloodstream decreases by about 29% each hour.
 - a) Write an exponential decay model giving the amount y (in milligrams) of ibuprofen in your bloodstream *t* hours after the initial dose.

b) Estimate how long it takes for you to have 100 milligrams of ibuprofen in your bloodstream.

Rewrite the function in the form $y = a(1 \pm r)^t$. Then state the growth or decay rate. 5. $y = a(1.26)^t$ 6. $y = a(1.26)^t$

7.
$$y = a(0.94)^t$$
 8. $y = a(0.86)^t$

9. $y = a(0.96)^t$ 10. $y = 1.01^t$

