6.1 Factoring by Grouping DAY TWO

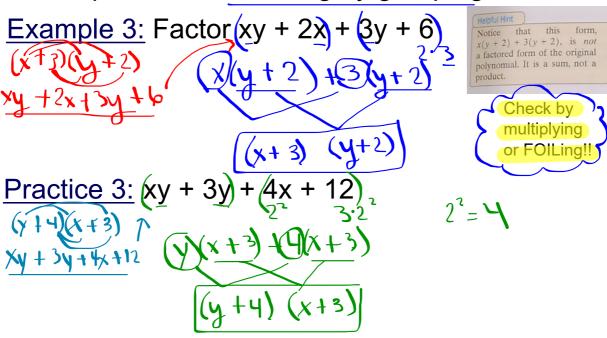
OBJECTIVE 4: Factoring by Grouping

Once the GCF is factored out, we can often continue to factor the polynomial using a variety of techniques. We discuss here a technique for factoring polynomials called <u>factoring</u> by grouping.

Factoring by Grouping is most often used when there are <u>four terms</u>. The nice thing is it has a self built in <u>checking system</u> if done correctly.

Here are a few examples of the self built-in checking with factoring by grouping.

Example 1: Factor:
$$5(x + 3) + 0(x + 3)$$


Practice 1:8(y - 2) +
$$x(y - 2)$$

another example

Example 2: Factor:
$$3m^2n(a + b) - (a + b)$$

Practice 2:
$$7xy^3(p+q)-1(p+q)$$

Whole process of factoring by grouping:

To Factor a Four-Term Polynomial by Grouping

Step 1. Group the terms in two groups of two terms so that each group has a common factor.

Step 2. Factor out the GCF from each group.

Step 3. If there is now a common binomial factor in the groups, factor it out.

Step 4. If not, rearrange the terms and try these steps again.

Examples 4 - 6: Factor by Grouping

4)
$$(15x^3 - 10x^2 + (6x - 4))$$
5) $(3x^2 + 4x)(-3x - 4y)$
5x $(3x + 4y)(-3x + 4y)$
6) $(2a^2 + 5ab) + (2a + 5b)$
(a + 1) $(2a + 5b)$

Practices 4 - 6: Factor by Grouping

4)
$$(40x^3 - 24x^2) + (15x - 9)$$
5) $(3y^2 + 2x)y - 2x - 3y)$

$$(3y + 2x) - 1(2x + 3y)$$

$$(3x^2 + 3)(5x - 3)$$

$$(y - 1)(3y + 2x)$$

6)
$$(7a^3 + 5a^2) + (7a + 5)$$

 $a^2 (7a + 5) + 1 (7a + 5)$
 $(a^2 + 1) (7a + 5)$

Examples 7 & 8: Factor by grouping.

Sometimes we may need to change the order.

7)
$$3xy + 2 - 3x - 2y$$

 $(3xy - 3x) + (2 - 2y)$
 $3x(y-1) - 2(-1+y)$
 $(3x-2)(y-1)$

8)
$$5x - 10 + x^3 - x^2$$

 $(x^3 + 5) + (x^2 - 10)$
 $\times (x^2 + 5) - (x^2 + 10)$
not factorable

Practice 7 & 8:

7)
$$4xy + 15 - 12x - 5y$$

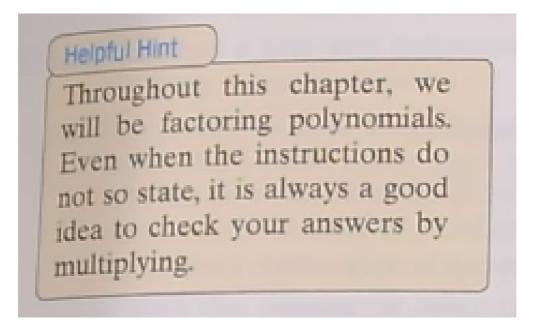
 $(4xy - 12x) + (15 - 5y)$
 $(4x)(y - 3(-5(-3+y))$
 $(y-3)(4x-5)$

8)
$$(9y - 18) + (y^3 - 4y^2)$$

 $(y-2)y^2(y-4)$
Not factorable

Remember if you can first GCF, you should!

Example 9: Factor:
$$4ax - 4ab - 2bx + 2b^2$$


$$2(2ax - 2ab)(-bx + b^2)$$

$$2(2a(x-b)-b(x-b))$$

$$\left[2\left(2a-b\right)(x-b)\right]$$

Practice 9: 3xy - 3ay - 6ax + 6a²

$$3(xy-ay-2ax+2a^{2})$$
 $3(y(x-a)-2a(x-a)]$
 $3(y-2a)(x-a)$

Vocabulary, Readiness & Video Check Use the choices below to fill in each blank. Some choices may be	be used more than	once and son	ne may not be used at all
greatest common factor factors factoring	true fals		greatest
	ctors of 2		
2. The greatest common factor of a list of integers is the large	st integer that is	a factor of all	the integers in the list.
2. The greatest common factor of this of integers is the lange	D		
The greatest common factor of a list of common variables: least	raised to powers	is the variable	e raised to the
3. The greatest common factor of a list of common variables least exponent in the list.	raised to powers	is the variable	e raised to the
3. The greatest common factor of a list of common variables	raised to powers	is the variable	e raised to the

6.1 DAY TWO Assignment:

pg. 386: 55 - 98 (o), 111, 113