6.1 Introduction to Random Variables and Probability Distributions

Essential Question:

What is the difference between discrete and continuous variables?

What is a probability distribution?

FOCUS POINTS:

- Distinguish between discrete and continuous random variables.
- Graph discrete probability distribution.
- Compute mu and sigma for a discrete probability distribution, linear function of a random variable x, and linear combination of two independent random variables.

Nov 28-10:16 AM

A quantitative variable, x, is a <u>random variable</u> if the value that x takes on in a given experiment or observation is a chance or random outcome.

A <u>discrete random</u> <u>variable</u> can take on only a finite number of values or a countable number of values.

ie: a count of students in a class

A <u>continuous random variable</u> can take on any of the countless number of values in a line interval.

ie: a continuous scale like air pressure in a tire

Practice 1:

Which of the following random variables are discrete and which are continuous?

- a) <u>Measure</u> the time it takes a student selected at random to register for the fall term. **CONTINUOUS**
- b) <u>Count</u> the number of bad checks drawn on Upright Bank on a day selected a random. **DISCRETE**

DISCRETE CONTINUOUS

- c) <u>Measure</u> the amount of gasoline needed to drive your car 200 miles. **CONTINUOUS**
- d) Pick a random sample of <u>50</u> registered voters in a district and find the number who voted in the last county election.

 DISCRETE

Nov 28-10:24 AM

A random variable has a probability distribution whether it is discrete or continuous.

A <u>probability distribution</u> is an assignment of probabilities to each <u>distinct value</u> of a <u>discrete</u> random variable or to each <u>interval</u> of values of a <u>continuous</u> random variable.

FEATURE OF THE PROBABILITY DISTRIBUTION OF A DISCRETE RANDOM VARIABLE

- 1) The probability distribution has a probability assigned to *each distinct* value of the random variable.
- 2) The sum of all the assigned probabilities must be 1.

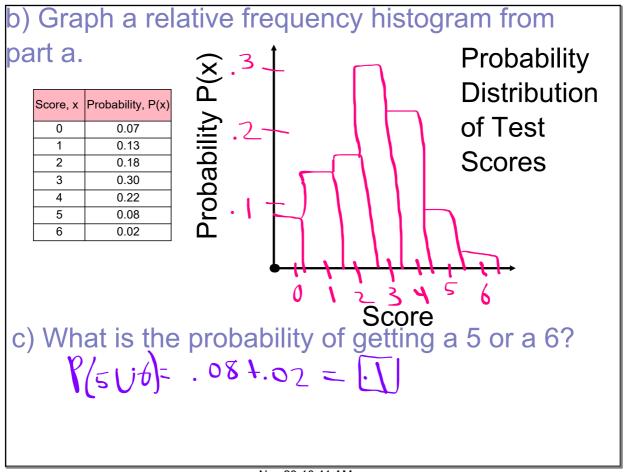
Nov 28-10:31 AM

Example 1: Boredom

Dr. Mendoza developed a test to measure boredom tolerance. He administered it to a group of 20,000 adults between the ages of 25 and 35. The possible scores were 0, 1, 2, 3, 4, 5, and 6, with 6 indicating the highest tolerance for boredom.

a) If a subject is chosen at random from this group, the probability that he or she will have a score of 3 is $\frac{6000}{20000}$ or 0.30. In a similar way, we can use relative frequencies to compute the probabilities for the other scores.

sompate the pro					
	Score	Number of Subjects			
	Ó	1400			
	1	2600			
	2	3600			
d	3	6000	り		
	4	4400			
	5	1600			
	6	400			
		22.00	C		
	. X.	<i>แ</i> ก.ง>			


Score, x	Probability, P(x)
0	-07
1	.13
2	.18
3	• 3
4	.22
5	08
6	.02/
PAN	

Find each probability for each score, x.

Y(1) = 2600 ≈ .13

What should the total probability add up to?

y 100%

Nov 28-10:41 AM

The mean and the standard deviation of a discrete population probability distribution are found by using these formulas:

$$\mu = \sum_{x} P(x)$$
; μ is called the expected value of x

$$\sigma = \sqrt{\sum (x - \mu)^2 P(x)}$$
; σ is called the standard deviation of x

where x is the value of a random variable, P(x) is the probability of that variable, and the sum Σ is taken for all the values of the random variable.

6.1 Intro to Random Variables and Probability Distribution with work

Example 2: TV Infomercials

Are we influenced to buy a product by an ad we saw on TV? National Infomercial Marketing Association determined the number of times buyers of a product had watched a TV infomercial before purchasing the product. (Results below)

We can treat the information shown as an estimate of the probability distribution because events are mutually exclusive and the sum of the %'s are 100%. Compute the mean (μ) and the standard deviation (σ) .

# of Times Buyers Saw Infomercials	1	2	3	4	5*
% of Buyers	27%	31%	18%	9%	15%

Check with your calculator!

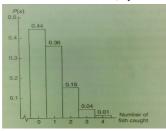
Χ	P(x)	xP(x)	$(x - \mu)^2$	$(x - \mu)^2 P(x)$
1	0.27	.27	2.372	.640
2	0.31	.62	.292	.091
3	0.18	.54	.212	. 038
4	0.09	36	2.132	.192
5	0.15	.15	0.052	.908
	'_ , \			·

 $\mu = \Sigma x P(x) = \frac{2.54}{0.54} \sigma = (x - \mu)^2 P(x) = \frac{1.869}{0.869}$

Nov 28-2:02 PM

What does a discrete probability distribution tell us?

A discrete probability distribution tell us


- the complete sample space on which the distribution is based.
- the corresponding probability of each event in the sample space.

In addition formulas tell us how to find the expected value μ and the standard deviation σ of the distribution.

6.1 Intro to Random Variables and Probability Distribution with work

HW: p. 248: 1, 3, 5, 7, 13

- 1. a) discrete
 - b) continuous
 - c) continuous
 - d) discrete
 - e) continuous
- 3. a) Yes. b) No, probabilities total to more than 1.
- 5. No. Even though the outcomes in the sample space are the same, the individual probabilities may differ in a way that produces the same μ but a different standard deviation.
- 7. Expected value = 0.9. $\sigma \approx 0.6245$
- 13. a) Fishing Trout in Paiute Indian Nation, Pyramid Lake, Nevada b) 0.56 c) 0.20 d) 0.82 e) 0.899

Nov 28-2:22 PM