6.1

Practice A

In Exercises 1–6, evaluate the expression. Show all work for full credit.

1.
$$(-3)^0$$

3.
$$3^{-5} = \frac{1}{3^{5}} = \boxed{243}$$

4.
$$(-5)^{-3}$$

$$= \frac{1}{(-5)^3} = \boxed{\frac{1}{-125}}$$

$$5. \ \frac{3^{-2}}{9^0} = \frac{3^{-2}}{1}$$

$$= \boxed{1}$$

6.
$$\frac{6^{-1}}{-5^0} = \frac{b^{-1}}{-1} = \boxed{\frac{1}{-b}}$$

In Exercises 7–18, simplify the expression. Write your answer using only <u>positive</u> exponents. Show all work for full credit.

7.
$$x^{-6}$$

9.
$$7x^{-4}y^{0}$$

10.
$$12f^0g^{-9}$$

11.
$$\frac{3^{-2}a^0}{b^{-2}}$$

12.
$$\frac{6^{0}tu^{-5}}{2^{5}}$$

13.
$$\frac{4^7}{4^4} = 4^7 = 4^3 = 64$$

14.
$$\frac{(-3)^6}{(-3)^3} = (-3)^3$$

$$= (-3)^3$$

$$= [-3]^3$$

15.
$$(-8)^3 \cdot (-8)^3$$

= $(-8)^{3+3}$
= $(-8)^6$
= $(-8)^6$

16.
$$7^{-4} \cdot 7^{4}$$

$$= 7^{-4} + 4$$

$$= 7^{0}$$

17.
$$(h^3)^4$$
= $h^3 \cdot 4$
= h^{12}

18.
$$(t^{-2})^6$$

$$= (-2)(b)$$

$$= 1$$

$$= 1$$

$$= \frac{1}{12}$$

19. A camera lens magnifies an object 10^3 times. The length of an object is 10^{-4} centimeter. What is its magnified length?

$$(10^3)(10^{-4}) = 10^{3-4} = 10^{-1} = \frac{1}{10} \text{ cm}$$

In Exercises 20–22, simplify the expression. Write your answer using only <u>positive</u> <u>exponents</u>. Show all work for full credit.

In Exercises 23 and 24, simplify the expression. Write your answer using only positive exponents. Show all your work for full credit.

23.
$$\left(\frac{3x^{2}y^{-3}}{2x^{-3}y^{2}}\right)^{3}$$

$$= \left(\frac{3x^{2}x^{3}}{2y^{2}y^{3}}\right)^{3}$$

$$= \left(\frac{3x^{5}}{2y^{5}}\right)^{3}$$

$$= \left(\frac{3x^{5}}{2y^{5}}\right)^{3}$$

$$= \frac{(3)^{3}(x^{5})^{3}}{(2)^{3}(y^{5})^{3}} = \boxed{27x^{15}}$$

$$= \frac{(-3)^{4}(b^{3})^{4}}{(a^{4})^{4}} = \boxed{81b^{3b}}$$

$$= \frac{(-3)^{4}(b^{3})^{4}}{(a^{4})^{4}} = \boxed{81b^{3b}}$$

In Exercises 25 and 26, evaluate the expression. Write your answer in scientific notation and standard form. Show all work for full credit.

$$= (1.2)(4) \times 10^{-2}$$

$$= (1.2)(4) \times 10^{-2}$$

$$= (4.8 \times 10^{-5})$$

$$= (480,000)$$

26.
$$\frac{3.9 \times 10^{8}}{1.3 \times 10^{3}}$$

$$= 3.9 \times 10^{8}$$

$$= 3 \times 10^{5}$$

$$= 300,000$$