6.1 Properties of Exponents DAY THREE

Warm-up: review of scientific notation

- a) If the exponent is negative, which direction does the decimal move?
- b) When your calculator does scientific notation it gives you an E or EE. What does this stand for in your scientific notation?

How to relate real-life problems to the "Powers of 10"

https://www.fastcompany.com/1662461/how-to-apply-eamess-legendary-powers-of-10-to-real-life-problems

Writing Numbers in Scientific Notation

When the number is greater than or equal to 1, use a positive exponent.

 $84,000 = 8.4 \times 10^4$

The decimal point moves 4 places.

When the number is less than 1, use a negative exponent.

 $0.0783 = 7.83 \times 10^{-2}$

The decimal point moves 2 places.

Examples: Write each number in scientific notation.

Practice: Write each number in scientific notation.

Examples: Write each number in standard notation.

1) 4 X 10⁵

40,0,0,0,0

2) 8.3 X 10⁻⁴

3) 2.97 X 10⁻²

4) 8.456 X 10⁷

Practice: Write each number in standard notation.

1) 1.8499 X 10⁹

18499 ATTE

3) 6.41 X 10³

2) 3.582 X 10⁻⁶

··; 3,582 0.000603582

4) 9.06 X 10⁻⁵

EXAMPLES: Circle the BEST answer.

1) 8 X 10⁵ is 2/20/200/2,000 times as great as 4 X 10². 400

2) 4 X 10⁻⁵ is 0.02/0.20220 times as great as 2 X 10⁻⁴. $\frac{4 \cdot 10^{-5}}{2 \cdot 10^{-4}}$ $2.10^{-1} = .2$

3) The mass of a proton is about 1.7 X 10⁻²⁴ g. The mass of a neutron is about the same as a proton. The nucleus of an atom of carbon has 6 protons and 6 neutrons. The mass of the nucleus is about 2 X 10⁻²⁶ units. Circle the best choice for the units this measurement is given in: @kg/tons

PRACTICE: Circle the BEST answer.

- 1) 9 X 10¹⁰ is 30/300/3,000/30,000 times as great as 3 X 10⁷.
- 2) 4 X 10⁻¹² is $0.00001\sqrt{0.0001}/10/1000$ times as great as 4 X 10⁻⁸. $\sqrt{\frac{4 \cdot 10^{-12}}{4 \cdot 10^{-8}}} = \sqrt{10^{-12} 8} = \sqrt{10^{-12}} = 0.0001$
- 3) The air distance between Los Angeles, California, and New York City, New York, is about 3.9 X 10 units. Circle the best choice for the units this measurement is given in: cm / m (km)

Example: Evaluate the expression. Write your answer in scientific notation and standard form.

1)
$$(3 \times 10^{2})(1.5 \times 10^{-5})$$

 $3.1.5 \cdot 10^{-3}$
 $4.5 \cdot 10^{-3}$
 0.0045

2) $\frac{(6.4X10^7)}{(1.6X10^5)} = \boxed{4 \cdot 10^2}$

<u>Practice:</u> Evaluate the expression. Write your answer in scientific notation and standard form.

$$(3.9\times10^{-5}) = \frac{1}{2} \cdot 10^{-5-8}$$

$$(5.10^{-5}) \cdot 10^{3}$$

$$(5.10^{-5}) \cdot 10^{3}$$

$$(5.10^{-5-8}) \cdot 10^{3}$$

refix	Power	Decimal	Name	E.04
otta	1024	1,000,000,000,000,000,000,000,000	septillion	E+24
etta	1021	1,000,000,000,000,000,000,000	sextillion	
xa	1018	1,000,000,000,000,000,000	quintillion	E+21
eta	1015	1,000,000,000,000,000	quadrillion	
era	1012	1,000,000,000,000	trillion	
iga	109	1,000,000,000	billion	E+18
nega	10 ⁶	1,000,000	million	
ilo	10 ³	1,000	thousand	
none)	10°	1	one	
nilli	10-3	.001	thousandth	
nicro	10-6	.000 001	millionth	
ano	10-9	.000 000 001	billionth	E-18
ico	10-12	.000 000 000 001	trillionth	
emto	10-15	.000 000 000 000 001	quadrillionth	
tto	10-18	.000 000 000 000 000 001	quintillionth	E-21
epto	10-21	.000 000 000 000 000 000 001	sextillionth	
octo	10-24	.000 000 000 000 000 000 000 001	septillionth	

Write each number using calculator notation.

Write each number using scientific notation.

0,45

Real-Life Application Example

In 2012, on average, about 9.46 X 10⁻¹ pound of potatoes was produced for every 2.3 X 10⁻⁵ acre harvested. How many pounds of potatoes on average were produced for each acre harvested? Write your answer in scientific notation and in standard form.

$$\frac{9.46 \cdot 10^{-1} \text{ lbs}}{2.3 \cdot 10^{-5} \text{ acre}}$$

$$\frac{4.113 \cdot 10^{4}}{}$$

Real-Life Application Practice:

The speed of light is approximately 3 X 10⁵ kilometers per second. How long does it take sunlight to reach Jupiter? Write your answer in scientific notation and in standard

OUR SOLAR SYSTEM

Average Distance: 7.8×10^8 kilometers

form.

Real-life Application Practice AGAIN:

A byte is a unit used to measure a computer's memory. The table shows the numbers of bytes in several units of measure.

a) How many kilobytes are in 1 terabyte? 2

$$>^{10} \cdot \square = 2^{40}$$

b) How many megabytes are in 16 gigbytes?

c) Another unit used to measure a computers memory is a bit. There are 8 bits in a byte. How can you convert the number of bytes in each unit of measure given in the table to bits? Can you still use a base of 2? Explain.

6.1 Day Three Assignment

Scientific Notation Practice Worksheet