6.1 The Greatest Common Factor & Factoring by Grouping DAY ONE

REVIEW

Product (2)(3) = 62 & 3 are factors of 6 (2)(3) is in factored form of 6

The process of writing a polynomial as a product is called factoring the polynomial.

$$2x - 8$$
 $(2)(x - 4)$

OBJECTIVE 1: Finding the Greatest Factor of a List of Integers

The first step in factoring a polynomial is to see whether the terms of the polynomial have a common factor (GCF).

If there is one then write the polynomial as a product by factoring out the common factor.

This term factored out is called the greatest common factor or GCF.

Example 1: Find the GCF of each list of numbers.

 $2^2 = 4$

Practice 1:

OBJECTIVE 2: Finding the Greatest Common Factor of a List of Terms

The greatest common factor of a list of variables raised to powers is found in a similar way.

$$x^{2} = x \cdot x$$

$$x^{3} = x \cdot x \cdot x$$

$$x^{5} = x \cdot x \cdot x \cdot x$$

Example 2: Find the GCF of each list of terms.

a)
$$x^3$$
, x^7 , and x^5

b) y,
$$y^4$$
, and y^7

Practice 2:

a)
$$y^6$$
, y^4 and y^7

b)
$$x$$
, x^4 , and x^2

Remember that the GCF of a list of terms contains the smallest exponent on each common The GCF of x^5y^6 , x^2y^7 , and x^3y^4 is x^2y^4 .

Example 3: Find the GCF of each list of terms.

- a) $6x^2$, $10x^3$, & -8x2.3xx 2.5xxx -1.2^3x

- b) 18y², -63y³, & 27y⁴ 32.244 -1.7.3344 334444
- c) a³b², a⁵b, & a⁶b²

Practice 3: Find the GCF of each list of terms.

a) $5y^4$, $15y^2$, & $-20y^3$ b) $4x^2$, x^3 , & $3x^8$ 5yyyy 3.5yy $-1.2^3.5yy$ 2^3xx x x x $3x^2xx$ $3x^2xx$ $3x^2x$

c) a⁴b², a³b⁵, & a²b³

OBJECTIVE 3: Factoring Out the Greatest Common Factor

First step is to factor out the GCF.

CO	NCEPT CHECK		
		factored form(s) of 7	t + 21?
a. 7	b. 7 · t + 7 · 3	c. $7(t+3)$	d. $7(t+21)$

$$74 + 3.7$$
 $7(t + 3)$

Example 4: Factor each polynomial by factoring

out the GCF. $\frac{1}{2}$ $\frac{1}{3}$ a) 6t + 18 b) y^{5} $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

b) $y^{5} - y^{7}$ $y^{5} = 1$ $y^{5} (1 - y^{2})$ $y^{7} = y^{7}$

Practice 4:

a)
$$4t + 12$$
 $2^{2}t + 2^{2}\cdot 3$

$$2^{2} \qquad 2^{2}(t + 3)$$

$$4(t + 3)$$

$$3a$$
 $3a(-3a+6a-1)$

Practice 5:
$$-8b^6 + 16b^4 - 8b^2$$
 -1.2^3
 2^4
 -1.2^3
 2^5
 2^5
 2^5
 2^5
 2^5
 2^5
 2^5
 2^5
 2^5
 2^5

Examples 6 - 8: Factor.

6)
$$6a^{4} - 12a$$

$$6a^{4} - 12a$$

$$6a^{3} - 2$$
7) $\frac{3}{7}x^{4} + \frac{1}{7}x^{3} - \frac{5}{7}x^{2}$

$$\frac{1}{7}x^{2}(3x^{2} + x - 5)$$
8) $15p^{2}q^{4} + 20p^{3}q^{5} + 5p^{3}q^{3}$

$$5p^{2}q^{3}(3q + 4pq^{2} + p)$$

Practices 6 - 8: Factor.

6)
$$5x^{4} - 20x$$

$$5x(x^{3} - 4)$$
7) $\frac{5}{9}z^{5} + \frac{1}{9}z^{4} - \frac{2}{9}z^{3}$

$$\frac{1}{9}z^{3}(5z^{2} + 2z - 2)$$
8) $8a^{2}b^{4} - 20a^{3}b^{3} + 12ab^{3}$

$$4ab^{3}(2ab - 5a^{2} + 3)$$

6.1 DAY ONE Assignment:

Pg. 385: 1 - 53 (o)