6.2 Radicals & Rational Exponents DAY ONE

Essential Question: How can you write and evaluate an nth root of a number?

The inverse of squaring is a square root:

$$5^{2} = 25$$
 $\sqrt{25} = \sqrt{25} = \sqrt{5^{2}} = 5$
 $9^{2} = 81$ $\sqrt{81} = \sqrt{81} = \sqrt{9^{2}} = 9$
 $\sqrt{1} = 1$ $\sqrt{0} = 0$ $\sqrt{0.5} \approx 0.7071068$...

1, 4, 9, 16, 25, etc have roots that are whole numbers. Because of this: 1, 4, 9, 16, 25, etc are called perfect square numbers because a square with their area has sides that are whole or perfect numbers.

$$\sqrt{1} = \sqrt{2} = 1 \qquad \sqrt{5} \approx 2.2360 \qquad \sqrt{5} \qquad 2.236067977 \qquad \sqrt{2} \approx 1.414 \qquad \sqrt{6} \approx 2.449 \qquad \sqrt{7} \approx 2.449489743 \qquad \sqrt{3} \approx 1.732 \qquad \sqrt{7} \approx 2.645751311 \qquad \sqrt{4} = \sqrt{2} \approx 2 \qquad \sqrt{8} \approx 2.828 \qquad \boxed{7}$$

The root of 2, 3, 5, 6, 7, 8, etc are decimal numbers that are non-repeating and non-terminating. There is no fraction (or ratio) that equals these numbers, so they are called irrational numbers.

Examples: Use the Pythagorean Theorem to find the hypotenuse "c" of a right triangle with the given leg lengths "a" and "b". Round your answer to the

nearest thousandth.

a)
$$a = 3$$
, $b = 3$

b) $a = 5$, $b = 7$

c) $a = 2$, $b = 1$

(3) $+$ (3) $=$ C

(5) $+$ (7) $=$ C

(2) $+$ (1) $=$ C

(3) $+$ (1) $=$ C

(4) $+$ (1) $=$ C

(5) $+$ (1) $=$ C

(6) $+$ (1) $=$ C

(7) $+$ (1) $=$ C

(8) $+$ (1) $+$ (1) $=$ C

(9) $+$ (1) $+$ (1) $=$ C

(10) $+$ (10) $+$

YOUR TURN: Use the Pythagorean Theorem to find the hypotenuse "c" of a right triangle with the given leg lengths "a" and "b". Round your answer to the nearest thousandth.

1)
$$a = 9, b = 2$$

$$(9)^{2} + (2)^{2} = 2$$

$$(1)^{4} + (5)^{2} = 2$$

$$(2)^{5} + 2^{2} = 2$$

$$(3)^{2} + (2)^{2} = 2$$

$$(4)^{4} + (5)^{2} = 2$$

$$(5)^{4} + 25^{2} = 2$$

$$(7)^{4} + (7)^{4} = 2$$

$$(8)^{4} + 25^{4} = 2$$

$$(9)^{2} + (2)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)^{2} = 2$$

$$(10)^{4} + (5)$$

Vocabulary Terms:

<u>radical sign</u>: also called a <u>ladical sign</u>: also called a <u>ladical sign</u>:

$$\sqrt{}$$

radicand: the number under the radical sign

$$\sqrt{\mathit{radicand}}$$

<u>index:</u> the root you are taking (it is not always a 2 or square root), also the number of the same number required to come out of the radicand and multiply in front

$$\sqrt{} = 2 / = index /$$

RECALL!!!!

When you cube a number ...

$$2^3 = 2 \bullet 2 \bullet 2 = 8$$

To "undo" cubing a number, take the cube root of the number.

$$\sqrt[3]{8} = \sqrt[3]{2^3} = \sqrt[3]{2 \cdot 2 \cdot 2} = 2$$

How do you write square root with an exponent?

Cube root?

4th root?

nth root?

What you will learn...

- Find n^{th} roots.
- Evaluate expressions with rational exponents.
- Solve real-life problems involving rational exponents.

Core Vocabulary:

*n*th root

radical

index of a radical

square root

Finding nth Roots

You can extend the concept of a square root to other types of roots.

ie: 2 is the cube root of 8 because $2^3 = 8$, and 3 is the fourth root of 81 because $3^4 = 81$.

In general, for an integer n greater than 1, if $b^n = a$ then b is an n^{th} root of a. An n^{th} root of a is written as n, where the expression n is called a radical and n is the index of the radical.

You can also write an n^{th} root of a as a power of a. If you assume the Power of a Power Property applies to rational exponents, then the following is true.

$$(a^{\frac{1}{2}})^2 = a^{(\frac{1}{2})^2} = a^1 = a$$

$$(a^{\frac{1}{3}})^3 = a^{(\frac{1}{3})^3} = a^1 = a$$

$$(a^{\frac{1}{4}})^4 = a^{(\frac{1}{4})^4} = a^1 = a$$

Because $a^{\frac{1}{2}}$ is a number whose square is a, you can write $\sqrt{a} = a^{\frac{1}{2}}$. Similarly, $\sqrt[3]{a} = a^{\frac{1}{2}}$ and $\sqrt[4]{a} = a^{\frac{1}{2}}$. In genera, $\sqrt[n]{a} = a^{\frac{1}{n}}$ for any integer n greater than 1.

CORE CONCEPT

Real nth Roots of a

Let n be an integer greater than 1, and let a be a real number.

- If *n* is odd, then a has a one real *n*th root: $\sqrt[n]{a} = a^{\frac{1}{n}}$
- If *n* is even and a > 0, then a has two real *n*th roots: $\pm n/\overline{a} = \pm a^{\frac{1}{n}}$
- If *n* is even and a = 0, then a has one real *n*th root: $\sqrt[n]{0} = 0$
- If n is even and a < 0, then a has no real nth roots.

The *n*th roots of a number may be real numbers or *imaginary numbers*. You will study imaginary numbers in Alg 2.

Find the indicated real *n*th root(s) of a.

Evaluating Expressions with Rational Exponents

Remember that the radical \sqrt{a} indicates the positive square root of a. Similarly, an *n*th root of a, $\sqrt[n]{a}$, with an *even* index indicates the positive *n*th root of a.

Example: Evaluate each expression.

a)
$$\sqrt[3]{-8} = \sqrt[3]{2^3}$$

b) $\sqrt[164]{-164} = \sqrt[4]{2^4}$

= $\sqrt[4]{2 \cdot 2 \cdot 2 \cdot 2} = \sqrt[2]{2}$

Your Turn:

1) $\sqrt[4]{8} = -\sqrt[3]{2^3}$

= $-\sqrt[3]{2 \cdot 2 \cdot 2}$

2) $(-16)\sqrt[4]{4}$

= $-\sqrt[3]{2 \cdot 2 \cdot 2}$

even "n" possible noneal

6.2 DAY ONE Assignment

pg. 303: 1, 3 - 18, 35, 40, 43, 51 - 53