6.2 Radicals & Rational Exponents DAY TWO

WARM-UP: Review

- 1) 142^{0}
- $(-16)^0$ -16^0
- 3) $3x^2 + 4x^3 2x^2$
- 4) $3x^2 \cdot 4x^3 \cdot (-2x^2)$
- 5) $(x^4)^5$

- 6) $4(2x)^3$
- 7) $(x^{\frac{1}{3}})^2$
- 8) $4^{\frac{1}{2}}$
- 9) $81^{\frac{1}{4}}$
- 10) $(-27)^{\frac{1}{3}}$

WARM-UP: Review ANSWERS 1) 142⁰ =1 PEMDAS

- $3 \sqrt{3}x^{2} + 4x^{3} 2x^{2} + 4x^{3} + x^{2} = 2$
- 4) $3x^2 \cdot 4x^3 \cdot (-2x^2) = -24x^7$ 9) $81^{\frac{1}{4}} = 3$
- 5) $(x^4)^5 = x^{20}$

1)
$$142^{0} = 1$$

2) $(-16)^{0} = 1$ $-16^{0} = -1$ 6) $4(2x)^{3}$
 $1 = 4(8x^{3}) = 32x^{3}$
7) $(x^{\frac{1}{3}})^{2} = x^{\frac{2}{3}}$

- 10) $(-27)^{\frac{1}{3}} = -3$

A rational exponent does not have to be of the form $\frac{1}{n}$. Other rational numbers such as $\frac{3}{2}$ can also be used as exponents. You can use the properties of exponents to evaluate or simplify expressions involving rational exponents.

CORE CONCEPT

Rational Exponents

Let $a^{\frac{1}{n}}$ be an n^{th} root of a, and let m be a positive integer.

Algebra	$a^{\frac{m}{n}} = (a^{\frac{1}{n}})^{\underline{m}} = (\sqrt[n]{a})^{\underline{m}}$
Numbers	$27^{\frac{2}{3}} = (27^{\frac{1}{3}})^2 = (\sqrt[3]{27})^2 = (\sqrt[3]{2})^2 = \sqrt[9]{3}$

Whole Number Cubed	Perfect Cube (cube root is whole number)	
03	0.0.0 = 0 $30 = 0$	
1 ³	·/·/=/ 3/1=/	
2 ³	2.2.2=8 38=2	
3 ³	3.3.3=27 3 27=3	
4 ³	4.4.4=64 364=4	
5 ³	5.5.5=125 3/125=5	
6 ³	6.6.6=216 3/216=10	
7 ³	7.7.7=343 3343=7	
8 ³	8.87=512 3512 =8	
93	9.9.9=729 3729=9	

Evaluate.
a)
$$16^{\frac{3}{4}}$$
 b) $27^{\frac{4}{3}} = (3)^{\frac{3}{4}} = (3)^{\frac{3}{4}}$

Your Turn to Evaluate:

1) $243^{\frac{2}{5}}$ Ans 2
Ans 2
Ans 2
Ans 3
Ans 2
Ans 3
Ans

Real-Life Application Example:

The radius, r, of a sphere is given by the equation $r = \left(\frac{3V}{4\pi}\right)^3$, where V is the volume of the sphere. Find the radius of the beach ball to the nearest foot.

Volume of a sphere: $V = \frac{4}{3}\pi r^3$

3(113) 339	26.99044586
4(3.14)	26.99 (1/3)
12.56 339/12.56	2.999629584 3 <u>76.99</u>
26.99044586	126.99 2.999629584

End of Section Quiz Review:

1) Find the indicated real nth roots of a when n = 4 and a = 625.

Evaluate each expression.

4) Use the equation $r = \left(\frac{F}{P}\right)^n - 1$ to calculate the annual inflation rate r (in decimal form) of an item that increases in value from P to F over *n* years. The cost of a gallon of milk increased from \$2.81 to \$3.48 over 10 years. Find the annual inflation rate to the nearest tenth of a percent.

6.2 DAY TWO Assignment:

pg. 303: 19 - 34 (no calc), 54 - 57