Name

Date_

6.3 & 6.4 DAY TWO CYU

☑ Use when you get it right all by yourself

 ${old S}$ Use when you did it all by yourself, but made a silly mistake

 \emph{H} Use when you could do it alone with a little help from teacher or peer

 $m{a}$ Use when you completed the problem in a group

 \pmb{X} Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Converting between the inverses	1 - 6	19 - 24	25
Evaluating logarithms	8, 9, 12 - 15	7, 10	11
Simplifying logarithmic/exponential	16 - 18		
expression			
Finding the inverse function		19 - 24	25
Real-world application			25
Describing transformations with			26 - 27
exponential & logarithms			
Sketching exponential/logarithms			26 - 27
Writing rules from transformations		28 - 29	

Rewrite the equation in exponential form. "I heart logs"

1. $\log_9 1 = 0$ **2.** $\log_6 216 = 3$ **3.** $\log_2 \frac{1}{4} = -2$

Rewrite the equation in logarithmic form. "I heart logs"

4. $13^{-2} = \frac{1}{169}$ **5.** $4^{3/2} = 8$ **6.** $81^{1/2} = 9$

Evaluate the logarithm. "I heart logs" with a ?; no x =.

7. $\log_8 64$ **8.** $\log_2 32$ **9.** $\log_{10} 1$

10. $\log_3 \frac{1}{81}$ **11.** $\log_2 0.125$ **12.** $\log_{10} 0.01$

Evaluate the logarithm using a calculator. Round your answer to three decimal places.

13. $\log(\frac{1}{5})$ **14.** $2 \ln(1.4)$ **15.** $\ln(0.4) - 2$

Simply the expression. Show all work for full credit. Remember square root and quadratics are inverses, so they cancel each other.

16. $e^{\ln 7x}$ **17.** $10^{\log 18}$ **18.** $\log(10^{3x})$

Find the inverse of the function. Show all work for full credit. "I heart logs"

19. $y = 0.75^x$ **20.** $y = \log_{3/4} x$ **21.** $y = \log\left(\frac{x}{2}\right)$

22. $y = \ln(x + 2)$ **23.** $y = e^{x-3}$ **24.** $y = 6^x + 2$

- **25.** The length ℓ (in inches) of an alligator and its weight *w* (in pounds) are related by the function $\ell = 27.1 \ln w 32.8$.
 - **a.** Estimate the length (in inches) of an alligator that weighs 250 pounds. What is its length in feet?
 - **b.** Find the inverse of the given function. Use the inverse function to find the weight of a 14-foot alligator. (*Hint*: Convert to inches first.)

Describe the transformation of f, the parent function, represented by g. Then sketch each function. Think about t-charts, PP's, and asymptotes.

26. $f(x) = e^{-x}, g(x) = e^{-x} - 5$ **27.** $f(x) = e^{x}, g(x) = -e^{x+2}$

Write a rule for g that represents the indicated transformation of the graph of f.

- **28.** $f(x) = \left(\frac{2}{5}\right)^x$; reflection in the *y*-axis, followed by a horizontal compression by a factor of 2 and a translation 4 units down
- **29.** $f(x) = e^{-x}$; translation 2 units left and 3 units up, followed by a vertical stretch by a factor of 2

CYU Reflection: How far can you go: basic, intermediate, or advanced? Rate your mastery level! How confident are you with the skills this CYU covered? Circle the score you would give yourself. 1 2 3 4 5 6 7 8 Basic Intermediate Advanced Solved ALL!