6.3 & 6.4 DAY TWO CYU

Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake HUse when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Converting between the inverses	1 - 6	19 - 24	25
Evaluating logarithms	8, 9, 12 - 15	7, 10	11
Simplifying logarithmic/exponential expression	16 - 18		
Finding the inverse function		19 - 24	25
Real-world application			25
Describing transformations with exponential & logarithms			26 – 27
Sketching exponential/logarithms			26 - 27
Writing rules from transformations		28 - 29	

Rewrite the equation in exponential form. "I heart logs"

1.
$$\log_9 1 = 0$$

2.
$$\log_6 216 = 3$$

3.
$$\log_2 \frac{1}{4} = -2$$

$$2^{-2} = \frac{1}{4}$$

Rewrite the equation in logarithmic form. "I heart logs"

4.
$$13^{-2} = \frac{1}{169}$$
 $\log_{13} \frac{1}{169} = -2$
5. $4^{3/2} = 8$
 $\log_{4} 8 = \frac{3}{2}$

5.
$$4^{3/2} = 8$$

6.
$$81^{1/2} = 9$$
 $\log_{81} 9 = \frac{1}{2}$

Evaluate the logarithm. "I heart logs" with a ?; no x = .

10.
$$\log_3 \frac{1}{81}$$

11.
$$\log_2 0.125$$

12.
$$\log_{10} 0.01$$

-4

Evaluate the logarithm using a calculator. Round your answer to three decimal

13.
$$\log(\frac{1}{5})$$
 - 0.699

13.
$$\log(\frac{1}{5})$$
 - 0.699 14. $2 \ln(1.4)$ 0.673 15. $\ln(0.4)$ - 2 -2.916

Simply the expression. Show all work for full credit. Remember square root and quadratics are inverses, so they cancel each other.

16.
$$e^{\ln 7x}$$

18.
$$\log(10^{3x})$$

Find the inverse of the function. Show all work for full credit. "I heart logs"

19.
$$v = 0.75^x$$

20.
$$y = \log_{3/4} x$$

$$21. \quad y = \log\left(\frac{x}{2}\right)$$

22.
$$y = \ln(x+2)$$
 23. $y = e^{x-3}$

$$y^{-1} = e^{x} - 2$$
 $y^{-1} = (\ln x) + 3$ $y^{-1} = \log_{6}(x - 2)$

$$u^{-1} = (\ln x) + 3$$

- 25. The length ℓ (in inches) of an alligator and its weight w (in pounds) are related by the function $\ell = 27.1 \ln w - 32.8$.
 - a. Estimate the length (in inches) of an alligator that weighs 250 pounds. What is ≈ 116.832 in ≈9.74ft its length in feet?
 - b. Find the inverse of the given function. Use the inverse function to find the 2 1652.426 lbs weight of a 14-foot alligator. (Hint: Convert to inches first.)

Describe the transformation of f, the parent function, represented by g. Then sketch each function. Think about t-charts, PP's, and asymptotes.

26.
$$f(x) = e^{-x}, g(x) = e^{-x} - 5$$

Write a rule for g that represents the indicated transformation of the graph of f.

28. $f(x) = \left(\frac{2}{5}\right)^x$; reflection in the y-axis, followed by a horizontal compression by a f(x) -> q(x)

factor of 2 and a translation 4 units down

$$g(x) = \left[-\frac{1}{2}\left(\frac{2}{5}\right)\right]^{x} - 4$$
 or $\left(\frac{-2}{10}\right)^{x} - 4$ or

29. $f(x) = e^{-x}$; translation 2 units left and 3 units up, followed by a vertical stretch f(x) +q(x) by a factor of 2 2f(x+2)+3

 $9(x) = 2e^{-x+2} + 3$

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

