6.3 Exponential Functions

Essential Question:

What are some of the characteristics of the graph of an exponential function?

What You Will Learn:

- Identify and evaluate exponential functions.
- Graph exponential functions.
- Solve real-life problems involving exponential functions.

Core Vocabulary

exponential function independent variable dependent variable

parent function

Exponential function: the variable is in the exponent

Dec 23-8:35 AM

Identifying & Evaluating Exponential Functions

An exponential function is a nonlinear function of the form $y = ab^x$, where $a \ne 0$, $b \ne 1$, and b > 0. As the independent variable x changes by a constant amount, the dependent variable y is multiplied by a constant factor, which means consecutive y-values form a constant ratio.

Identifying & Evaluating Exponential Functions

An exponential function is a nonlinear function of the form $y = ab^x$, where $a \ne 0$, $b \ne 1$, and b > 0. As the independent variable x changes by a constant amount, the dependent variable y is multiplied by a constant factor, which means consecutive y-values form a constant ratio.

Dec 23-8:40 AM

More Practice:

PEMNAS Evaluate each function for the given value of x.

a.
$$y = -2(5)^{x}$$
; $x = 3$
 $= -2(5)^{2}$
 $= -2(125) = -250$
b. $y = 3(0.5)^{x}$; $x = -2$
 $= 3(\frac{1}{2})^{2}$
 $= -2(125) = -250$
 $= 3(0.5)^{2}$
 $= 3(\frac{2}{1})^{2}$
 $= 3(4) = 12$

Your Turn:

Evaluate each function for the given value of x.

a.
$$y = -3 (4)^{x}$$
; $x = 2$
 $= -3 (4)^{2}$
 $= -3 (4)^{4}$
 $= -3 (16)$
But the second of the se

Dec 23-8:37 AM

Steps:

- 1) Make a t-table of values.
- 2) Plot the ordered pairs from your table.
- 3) Draw a smooth curve through the points.

Graph:

Graphing Exponential Functions

The graph of a function $y = ab^x$ is a vertical stretch or shrink by a factor of |b| of the graph of the parent function $y = b^x$. When a < 0, the graph is also reflected over the x-axis. The y-intercept of the graph of $y = ab^x$ is a.

Dec 23-8:49 AM

Example: Graphing when b > 1

Graph $f(x) = 4(2)^x$. Compare the graph to the graph of the parent function. Describe the domain and range of f.

Make a table, plot the

The parent function is $g(x) = 2^x$. The graph of f is a vertical stretch by a factor of 4 on the graph of g. The y-intercept of the graph of f, (0, 4), is above the y-intercept of the graph of g, (0, 1). From the graph of f, you can see the domain is all real numbers and the range is y > 0.

6.3 Exponential Functions with work

Earned Notes

Example

Graph $f(x) = -(0.25)^x$ $R: \gamma < 0$

$$R: Y \leq 0$$

Compare the graph to the graph of the parent function. Describe the domain and range of f.

X	-(0.25) ^x	f(x) or y
-2	$-\left(\frac{1}{4}\right)^{-2}=-\left(4\right)^{2}$	-16
-1	$-\left(\frac{1}{4}\right)^{1}=-\left(4\right)^{1}$	-4
0	$-\left(\frac{1}{4}\right)^{\circ}$	- (
7	$-(\frac{1}{4})^{2} = -\frac{1}{16}$)
_	-(4)=-16	- i i

Dec 23-8:57 AM

Your Turn:

 $f(x) = -\left(\frac{1}{2}\right)$

Compare the graph to the graph of the parent function. Describe

the domain and range of f.

X	-(1/2)x	f(x)
-2	$-(2)^{-2} = -(2)^{2}$	-4
-1	$-\left(\frac{1}{2}\right)^{-1}=-\left(2\right)$	<u>-5</u>
U	$-\left(\frac{1}{2}\right)^{0}$	- (
1	$-\left(\frac{1}{2}\right)^{1}$	- 2
2	- (1)	- 4

Real-World Application

The graph represents a bacterial population y after x days.

a) Write an exponential function that represents the

b) Find the population after 12 hours after 5 days.

$$\chi = 5.5$$
 $y = 3.4^{5.5} = 3*4^{5.5}$ 6144

Dec 23-9:02 AM

Assignment:

pg. 310: 5 - 12, 21 - 24, 27, 28, 50, 51