6.4 Exponential Growth & Decay DAY ONE

Essential Question:

What are some of the characteristics of exponential growth and exponential decay functions?

1) Growing Exponentially - you start with \$300 in your savings account. You earn 1.5% in interest at the end of each year. Make a table to show the year-end \$ amounts

2) Write the equation to model this growth:

Dec 23-9:16 AM

2) Exponential Decay (losing value) - \$10,000 is invested in the stock market and the account loses 3% of its value each year for 6 consecutive years. Make a table of values and write the equation that models this.

What You Will Learn:

- Use and identify exponential growth & decay functions
- Interpret & rewrite exponential growth & decay functions.
- Solve real-life problems involving exponential growth & decay.

Core Vocabulary:

exponential growth
exponential growth function
exponential decay
exponential decay function
compound interest

- a. Write an exponential growth function that represents the attendance after t years.
- b. How many people will attend the festival in the fifth year? Round your answer to the nearest thousand.

Dec 23-9:43 AM

Exponential Growth & Decay Functions

Exponential growth occurs when a quantity increases by the same factor over equal interval's of time.

Core Concept

A function of the form $y = a(1 + r)^t$, where a > 0 and r > 0, is an exponential growth function.

Example: Using an Exponential Growth Function

The inaugural attendance of an annual music festival is 150,000. The attendance y increases by 8% each year.

$$y=a(1+r)$$
 $q=150,000$
 $y=150,000$
 $y=150,000$
 $y=150,000$

Practice:

- 1. A website has 500,000 members in 2010. The number y of members increases by 15% each year.
- a) Write an exponential growth function that represents the website membership t years after 2010.

$$\alpha = 500,000$$

b) How many members will there be in 2016? Round your answer to the nearest ten thousand.

Exponential decay occurs when a quantity decreases by the same factor over equal intervals of time.

Core Concept

Exponential Decay Functions

A function of the form $y = a(1 - r)^t$, where a > 0 and 0 < r < 1, is an exponential decay function.

Dec 23-9:47 AM

For exponential growth, the value inside the parentheses is greater than 1 because r is added to 1. For exponential decay, the value inside the parentheses is less than 1 because r is subtracted from 1.

Dec 23-9:48 AM

Example: "r" is the rate of change, make sure it is a percent in your final answer. $y = a(1 \pm r)^t$

Determine whether each function represents *exponential growth* or *exponential decay*. Identify the percent rate of change.

Example

\$500 invested ... 12% interest rate ... 7 years

How much \$\$ after 7 years?

$$y = 500(1 + 0.12)^{1}$$

$$= 41,105.34$$

Dec 23-9:53 AM

Example:

The table shows the balance of a money market account over time.

Write a function that represents the balance after t years.

Year, t	Balance
0	\$100
1	\$110
2	\$121
3	\$133.10
4	\$146.41
5	\$161.05

Practice:

The value of a car is \$21,500. It loses 12% of its value every year.

a) Write a function that represents the value y (in dollars) of the car after t years.

b) Graph the function from part (a). Use the graph to estimate

the value of the car after 6 years.

Dec 23-9:55 AM

6.4 DAY ONE Assignment:

pg. 319: 1 - 29, 34, 35, 36, 38, 42 - 48