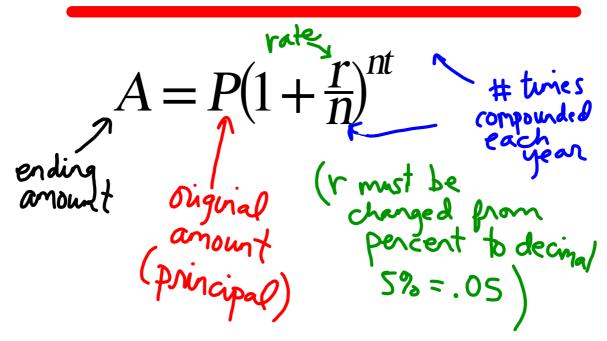
6.4 Exponential Growth & Decay DAY TWO

Essential Question:

What are some of the characteristics of exponential growth and exponential decay functions?

What You Will Learn:


- Use and identify exponential growth & decay functions
- Interpret & rewrite exponential growth & decay functions.
- Solve real-life problems involving exponential growth & decay.

Core Vocabulary:

exponential growth
exponential growth function
exponential decay
exponential decay function
compound interest

Dec 23-9:16 AM

COMPOUND INTEREST FORMULA

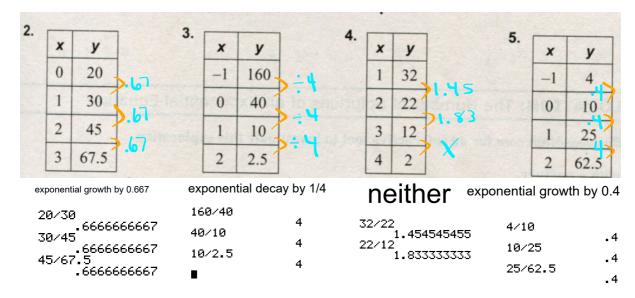
Example

\$500 invested ... 12% interest rate ... 7 years

How much \$\$ after 7 years?

Q = 500 r = 0.12 x = 7

y=500 (1.12) = 31/105.34


What if it is compound interest... compounded monthly? R = 500 $A = P(1 + \frac{r}{n})^{n}t$ Y = 0.12 $A = 500(1 + \frac{0.12}{12})^{n}$ t = 7

Dec 23-9:53 AM

- 1. In 2005, there were 100 rabbits in Polygon Park. The population increased by 11% each year.
- a) Write an exponential growth function that represents the population t years after 2005.

 $y = \alpha (1+r)^{x} = y = 100 (1+0.11)^{t}$

100(1.11)²⁰ 806.2311536 In exercises 2 - 5, determine whether the table represents an exponential growth function, an exponential decay function, or neither. EXPLAIN.

Feb 2-9:33 AM

In Exercises 6 - 8, determine whether each function represents exponential growth or exponential decay. Identify the percent rate of change, r.

In Exercises 9 & 10, write a function that represents the balance after \underline{t} years. $A = P(\underline{t}, \underline{t}, \underline{$

9. \$3,000 deposit that earns 6% annual interest compounded

$$P = 3000$$

 $r = 0.06$
 $n = 4$

10. \$5,000 deposit that earns 7.2% annual interest compounded monthly.

$$r = 5000$$
 $r = 0.072$
 $A = 5000 (1 + \frac{0.072}{12})^{12}$
 $n = 12$

6.4 DAY TWO Assignment:

pg. 319: 57 - 62