6.4 Transformations of Exponential \& Logarithmic Functions DAY ONE CYU

\square Use when you get it right all by yourself
SUse when you did it all by yourself, but made a silly mistake
\boldsymbol{H} Use when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
XUse when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Describing transformations	1	2,3	$4-10$
Sketching exponential \& logarithmic functions	1	2,3	$4-10$
Write functions from transformation descriptions		$11-15$	

Describe the transformation of frepresented by g. Then sketch each function.

1. $f(x)=3^{x}, g(x)=3^{x}+5$

2. $f(x)=e^{-x}, g(x)=e^{-x}-9$

3. $f(x)=2^{x}, g(x)=-2^{x-3}$

4. $f(x)=e^{x}, g(x)=e^{x}+4$

5. $f(x)=\left(\frac{1}{3}\right)^{x}, g(x)=\left(\frac{1}{3}\right)^{x+2}-\frac{2}{3}$

6. $f(x)=\log _{2} x, g(x)=\log _{2}(x+2)-3$

7. $f(x)=\left(\frac{1}{2}\right)^{x}, g(x)=6\left(\frac{1}{2}\right)^{x+5}-2$

8. $f(x)=\log _{\frac{1}{3}} x, g(x)=\log _{\frac{1}{3}}(-x)+6$

Write a rule for g that represents the indicated transformations of the graph of f.
11. $f(x)=5^{x}$; translation 2 units down, followed by a reflection in the y-axis.
12. $f(x)=e^{x}$; horizontal compression by a factor of $\frac{1}{2}$, followed by a translation 5 units up.
13. $f(x)=\log _{6} x$; vertical stretch by a factor of 6 , followed by a translation 5 units down.
14. $f(x)=\ln x$; translation 3 units right and 1 unit up, followed by a horizontal stretch by a factor of 8 .
15. $f(x)=\log _{\frac{1}{2}} x$; translation 3 units left and 2 units up, followed by a reflection in the y-axis.

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

