$oldsymbol{\mathcal{S}}$ Use when you did it all by yourself, but made a silly mistake HUse when you could do it alone with a little help from teacher or peer G Use when you completed the problem in a group X Use when a question was attempted but wrong (get help)

N	Jse when	a question	was not	even att	empted	

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED	
Describing transformations	1	2, 3	4 - 10	
Sketching exponential & logarithmic functions	1	2, 3	4 - 10	
Write functions from transformation descriptions		11 - 15		

Describe the transformation of f represented by g. Then sketch each function.

Write a rule for g that represents the indicated transformations of the graph of f.

11. $f(x) = 5^x$; translation 2 units down, followed by a reflection in the y-axis.

$$9(x) = 5^{-x} - 2$$

12. $f(x) = e^x$; horizontal compression by a factor of $\frac{1}{2}$, followed by a translation 5 units up. $Q(x) = e^{2x} + 5$

$$g(x) = e^{2x} + 5$$

13. $f(x) = log_6 x$; vertical stretch by a factor of 6, followed by a translation 5 units down.

14. $f(x) = \ln x$; translation 3 units right and 1 unit up, followed by a horizontal stretch by a factor of 8.

15. $f(x) = log_{\frac{1}{2}}x$; translation 3 units left and 2 units up, followed by a reflection in the y-axis.

$$9(x) = 109 + (-x+3) + 2$$

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

