Name \qquad Date \qquad Pd \qquad

6.5-6.7 Review Packet

1 - 6: Solve the equation. Show all your work for full credit. Box your final answer.

1. $2^{4 x}=2^{x+9}$
2. $3^{x}=243$
3. $7^{x-5}=49^{x}$
4. $27^{x}=9^{x-2}$
5. $\left(\frac{1}{5}\right)^{x}=125$
6. $3^{4 x-9}=\frac{1}{81}$

7-8: Find the common ratio of the geometric series. Box your final answer.
7. $4,12,36,108, \ldots$
8. $36,-6,1, \frac{1}{6}, \ldots$
$9-10$: Determine if the sequence is geometric, arithmetic, or neither. Justify your answer.
9. $-8,0,8,16, \ldots$
10. $9,14,20,27, \ldots$

11-12: Write the next three terms of the geometric sequence. Show your work.
11. $5,20,80,320, \ldots$
12. $81,-27,9,-3, \ldots$

13 - 14: Write an equation for the nth term. Then find a_{6}. Show your work to earn credit for both answers.
13. $32,8,2, \ldots$
14. $0.6,-3,15,-75, \ldots$
15. Determine whether the recursive rule represents an arithmetic sequence or a geometric sequence.

$$
a_{1}=18, a_{n}=a_{n-1}+1
$$

16 -17: Write the first six terms of the sequence. Then graph the sequence.
16. $a_{1}=10, a_{n}=a_{n-1}-5$
17. $a_{1}=-7, a_{n}=-4 a_{n-1}$

18 - 19: Write a recursive rule for the sequence.
18. $3,11,19,27,35, \ldots$
19.

20 - 21: Write an explicit rule for the recursive rule.
20. $a_{1}=8, a_{n}=a_{n-1}-12$
21. $a_{1}=5, a_{n}=-5 a_{n-1}$
21. Write a recursive rule for the explicit rule. $a_{n}=\mathbf{6 n - 2 0}$

