6.5 – 6.7 Review Packet

1-6: Solve the equation. Show all your work for full credit. Box your final answer.

1.
$$2^{4x} = 2^{x+9}$$

$$2.3^x = 243$$

3.
$$7^{x-5} = 49^x$$

4.
$$27^x = 9^{x-2}$$

5.
$$\left(\frac{1}{5}\right)^x = 125$$

$$6. \ 3^{4x-9} = \frac{1}{81}$$

- 7 8: Find the common ratio of the geometric series. Box your final answer.
 - 7. 4, 12, 36, 108, ...

8. 36, -6, 1, $\frac{1}{6}$, ...

- 9-10: Determine if the sequence is geometric, arithmetic, or neither. Justify your answer.
 - 9. -8, 0, 8, 16, ...

10. 9, 14, 20, 27, ...

- 11 12: Write the next three terms of the geometric sequence. Show your work.
 - 11. 5, 20, 80, 320, ...

12. 81, -27, 9, -3, ...

- 13 14: Write an equation for the nth term. Then find a_6 . Show your work to earn credit for both answers.
 - 13. 32, 8, 2, ...

14. 0.6, -3, 15, -75, ...

15. Determine whether the recursive rule represents an arithmetic sequence or a geometric sequence. $a_1 = 18$, $a_n = a_{n-1} + 1$

16 − 17: Write the first six terms of the sequence. Then graph the sequence.

16.
$$a_1 = 10$$
, $a_n = a_{n-1} - 5$

17.
$$a_1 = -7$$
, $a_n = -4a_{n-1}$

18 − 19: Write a recursive rule for the sequence.

20 – 21: Write an explicit rule for the recursive rule.

20.
$$a_1 = 8$$
, $a_n = a_{n-1} - 12$

21.
$$a_1 = 5$$
, $a_n = -5a_{n-1}$

$$a_n = 6n - 20$$