6.5 Properties of Logarithmic Functions and Change of Base Formula DAY TWO CYU

🗹 Use when you get it right all by yourself **S** Use when you did it all by yourself, but made a silly mistake H Use when you could do it alone with a little help from teacher or peer **G** Use when you completed the problem in a group X Use when a question was attempted but wrong (get help) NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Evaluating logarithmic expressions	1 - 3	4	
Expanding logarithmic expressions	7	8	9,10
Condensing logarithmic expressions	11	12, 13	14
Change-of-base formula	15 - 17		18
Making an Argument			19
Error Analysis		20	

Use $\log_7 4 \approx 0.712 \& \log_7 12 \approx 1.277$ to evaluate the logarithm. Show all work to earn full credit.

1. log	₇ 3	2. log ₇ 16	3. log ₇ 48	4. log 7 1/4
--------	----------------	------------------------	------------------------	--------------

Expand the logarithmic expression. Show all steps to earn full credit.

7. $\log_{3} 4x$ 8. $\log_{10x^{5}}$ 9. $ln \frac{x}{3y}$	10. $log_7 5\sqrt{x}$
---	-----------------------

Condense the logarithmic expression. Show all steps to earn full credit. 11. log₄ 7 – log₄ 10 12. 6 ln x + 4 ln y

13. $log_5 4 + \frac{1}{3}log_5 x$

14.
$$log_3 4 + 2log_3 \frac{1}{2} + log_3 x$$

Use the change-of-base formula to evaluate the logarithms. Give the exact (CRF) and the approximate answer, rounded to the thousandths.

15. $\log_4 7$ 16. $\log_9 15$ 17. $\log_6 17$ 18. $\log_7 \frac{3}{16}$

19. **MAKING AN ARGUMENT** Your friend claims you can use the change-of-base formula to graph $y = \log_3 x$ using a graphing calculator. Is your friend correct? Explain your reasoning.

20. ERROR ANALYSIS Describe and correct the error in expanding the logarithmic expression.

