Date ___

🗹 Use when you get it right all by yourself

 ${\it S}$ Use when you did it all by yourself, but made a silly mistake

H Use when you could do it alone with a little help from teacher or peer

 ${\it G}$ Use when you completed the problem in a group

 \pmb{X} Use when a question was attempted but wrong (get help)

N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Triangle or not a triangle	1a, 1d, 1f	1b, 1c, 1f	
Third side inequality	2a, 2c	2b	
Determining shortest & longest sides		4, 5	3
Determining smallest & largest angles		4, 5	
Side & Angle inequality comparison		6, 7	

1. Determine whether it is possible to form a triangle with the given side lengths. Show work for full credit.

a.	5, 12, 8	b.	$\frac{1}{2}$,	$\frac{7}{8}$,	$\frac{1}{4}$
			4	U	–

c.	$\frac{1}{-}, \frac{5}{-}, \frac{1}{-}$	d. 4, 6, 2
	6 12 3	

- e. $\frac{3}{7}, \frac{5}{14}, 1$ f. 8, 7, 5
- 2. The measures of two sides of a triangle are given. Between what two numbers must the third side fall? Write an inequality to show the reasonable range for the side lengths of your triangle.
 - a. 4 and 13 b. $\frac{1}{6}$ and $\frac{5}{9}$ c. 2 and 28

- 3. Refer to the figure at the right.
 - a. Name the longest side in ΔDEG .
 - b. Name the shortest side in $\triangle GEF$.
 - c. Name the shortest side of the figure.

- 4. List the angles of ΔKLM in order from least to greatest if KL = x 4, LM = x + 4, KM = 2x 1 and the perimeter of ΔKLM is 27.
- 5. List the sides of ΔKLM in order from least to greatest if $m \angle K = (3x 2)^{\circ}$, $m \angle L = (4x + 14)^{\circ}$, $m \angle M = 7x^{\circ}$.
- 6. Write an inequality relating the given pair of segments or angle measures. Give the reason for your conclusion.
 - a. \overline{UT} \overline{ST} (<,>,=).

Reason:

b. $m \angle 1$ ____ $m \angle 2$ (<,>,=).

Reason:

7. Write an inequality to describe the possible values of *x*.

U

