\qquad Date \qquad Pd \qquad 6.7 Modeling Exponential \& Logarithmic Functions DAY ONE CYU
\square Use when you get it right all by yourself
\boldsymbol{S} Use when you did it all by yourself, but made a silly mistake
\boldsymbol{H} Use when you could do it alone with a little help from teacher or peer
\boldsymbol{G} Use when you completed the problem in a group
X Use when a question was attempted but wrong (get help)
N Use when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Real-World Application			$1-6$
Exponential Regression		$1-4$	
Using models to predict		$5-6$	

1. MODELING WITH MATHEMATICS A store sells motorized scooters. The table shows the numbers y of scooters sold during the xth year that the store has been open. Write a function that models the data.

x	y
1	9
2	14
3	19
4	25
5	37
6	53
7	71

2. MODELING WITH MATHEMATICS The table shows the numbers y of visits to a website during the xth month. Write a function that models the data. Then use your model to predict the number of visits after 1 year.

\boldsymbol{x}	1	2	3	4	5	6	7
\boldsymbol{y}	22	39	70	126	227	408	735

3. MODELING WITH MATHEMATICS Your visual near point is the closest point at which your eyes can see an object distinctly. The diagram shows the near point y (in centimeters) at age x (in years). Write an exponential model for original data.

4. USING TOOLS A doctor measures an astronaut's pulse rate y (in beats per minute) at various times x (in minutes) after the astronaut has finished exercising. The results are shown in the table. Use a graphing calculator to find an exponential model for the data. Then use the model to predict the astronaut's pulse rate after 16 minutes.

\boldsymbol{x}	\boldsymbol{y}
0	172
2	132
4	110
6	92
8	84
10	78
12	75

5. USING TOOLS An object at a temperature of $160^{\circ} \mathrm{C}$ is removed from a furnace and placed in a room at $20^{\circ} \mathrm{C}$. The table shows the temperatures d (in degrees Celsius) at selected times t (in hours) after the object was removed from the furnace. Use a graphing calculator to find a logarithmic model (STAT, CALC, 9: LnReg) of the form $t=a+b \ln d$ that represents the data. Estimate how long it takes for the object to cool to $50^{\circ} \mathrm{C}$.

\boldsymbol{d}	160	90	56	38	29	24
\boldsymbol{t}	0	1	2	3	4	5

6. USING TOOLS The f-stops on a camera control the amount of light that enters the camera. Let s be a measure of the amount of light that strikes the film and let f be the f -stop. The table shows several f-stops on a 35 -milimeter camera. Use a graphing calculator to find a logarithmic model of the form $s=a+b \ln f$ that represents the data. Estimate the amount of light that strikes the film when $\mathrm{f}=5.657$.

\boldsymbol{f}	\boldsymbol{s}
1.414	1
2.000	2
2.828	3
4.000	4
11.314	7

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

