	KON		
Name	Key	Date	Pd
	6.7 Modeling Exponential &	Logarithmic Functions DAY ONE CYU	

H = (Hand) (= (calc)

☐ Use when you get it right all by yourself

S Use when you did it all by yourself, but made a silly mistake HUse when you could do it alone with a little help from teacher or peer

G Use when you completed the problem in a group

X Use when a question was attempted but wrong (get help)

NUse when a question was not even attempted

CONCEPTS	BASIC	INTERMEDIATE	ADVANCED
Real-World Application			1 - 6
Exponential Regression		1 - 4	
Using models to predict		5 - 6	

 MODELING WITH MATHEMATICS A store sells motorized scooters. The table shows the numbers y of scooters sold during the xth year that the store has been open. Write a function that models the data.

$$y = 7.20 (1.39)^{x}$$
 (H)
or
 $y = 6.703 (1.405)^{x}$ (c)

2. MODELING WITH MATHEMATICS The table shows the numbers y of visits to a website during the xth month. Write a function that models the data. Then use your model to predict the number of visits after 1 year.

x	1	2	3	4	5	6	7
У	22	39	70	126	227	408	735

after 1 year.

(H) $y = 12.26(1.79)^{x} \approx 13,266$ or

(C) $y = 12.143(1.796)^{x} \approx 13,677$

3. MODELING WITH MATHEMATICS Your visual near point is the closest point at which your eyes can see an object distinctly. The diagram shows the near point y (in centimeters) at age x (in years). Write an exponential model for original data.

(H)
$$y = 3.25(1.052)^{x}$$

(C) $y = 3.4995(1.0536)^{x}$

Visual Near Point	Distances
1	Age 20 12 cm
1	Age 30 15 cm
	Age 40 25 cm
	Age 50 40 cm
	Age 60 100 cm

X

1

2

3

4

5

6

7

y

9

14 19

25

37

53

71

4. **USING TOOLS** A doctor measures an astronaut's pulse rate y (in beats per minute) at various times x (in minutes) after the astronaut has finished exercising. The results are shown in the table. Use a graphing calculator to find an exponential model for the data. Then use the model to predict the astronaut's pulse rate after 16 minutes.

(c) $y = 153.07(0.93)^{\times}$ $\approx 48 b/m$

x	у
0	172
2	132
4	110
6	92
8	84
10	78
12	75

5. **USING TOOLS** An object at a temperature of 160° C is removed from a furnace and placed in a room at 20 °C. The table shows the temperatures d (in degrees Celsius) at selected times t(in hours) after the object was removed from the furnace. Use a graphing calculator to find a logarithmic model (STAT, CALC, 9: LnReg) of the form t = a + b ln d that represents the data. Estimate how long it takes for the object to cool to 50°C.

(c) t = 12.59 - 2.55 (In d) $\approx 2.6h$

- d
 160
 90
 56
 38
 29
 24

 t
 0
 1
 2
 3
 4
 5
- 6. **USING TOOLS** The f-stops on a camera control the amount of light that enters the camera. Let s be a measure of the amount of light that strikes the film and let f be the f-stop. The table shows several f-stops on a 35-milimeter camera. Use a graphing calculator to find a logarithmic model of the form s = a + b ln f that represents the data. Estimate the amount of light that strikes the film when f = 5.657.

s = 0.	000398-	+ 2.8	9(1	nf
~	5 units	20	ligh	t

f	s
1.414	1
2.000	2
2.828	3
4.000	4
11.314	7

CYU Reflection: How far can you go: basic, intermediate, or advanced?

Rate your mastery level!

How confident are you with the skills this CYU covered? Circle the score you would give yourself.

