Altitude: A segment that has an endpoint at a VerVe of a triangle and the other is on the side opposite the vertex and \qquad to this line. (The altitude may lie on the outside or inside of the triangle.)
Orthocenter; The intersection of the alfithdok a triangle.
Perpendicular Bisector: A line or line segment that passes through the midpoht of a side of a triangle and is
 to that side.
Circumcenter: Point of intersection of the \qquad of a triangle. The circumcenter is equidistant from the vertices of the triangle.
Median: A segment that connects a Weald of a triangle to the midpoint the side opposite the vertex.
Centroid: Point of intersection of the Mediants of a triangle. The centroid is
\qquad of the distance from each vertex to the midpoint of the opposite side.
Angle Bisector: A segment that Bisect $\sqrt{5}$ an angle of the triangle and has one endpoint at a V\&AY of the triangle and the other on another point on the triangle.
Incenter; The intersection of the
Bisectors of a triangle. The incenter is equidistant from the three side ff the triangle.

Any point on the perpendicular bisector of a segment is equidistant from the endpoints of the segment.
Any point that is equidistant from the endpoints of a segment lies on the perpendicular bisector of the segment.

Any point on the bisector of an angle is equidistant from the sides of the angle.
Any point on or in the interior of an angle and equidistant for the sides of an angle lies on the bisector of the angle.

Special Triangles:

Isosceles Triangle: The median, angle bisector, altitude, and perpendicular bisector from the same vertex is the same segment. The centroid, incenter, orthocenter, and circumcenter will be collinear.

Equilateral Triangle: The medians, angle bisectors, altitudes, and perpendicular bisectors from each vertex form three segments on the interior of the triangle. The centroid, incenter, orthocenter, and circumcenter are all the same point.

Right Triangle: Two of the altitudes are the legs of the triangle. The orthocenter lies on the vertex of the right angle.

Euler Segment: The segment formed by connecting the Centroid, Orthocenter and Circumcenter. (They are always collinear)
6.1: pg. 306: $3,11,15,19,23,25,39-44$
6.2: pg. 315: 3, 5, 11, 25, 29, 31, 52 - 59
6.3: pg. 324: 3, 11, 15, 27, 31, 33, 35, $55-58$

These practice problems are due by your Quiz along with this practice WS.

Draw and label a figure to illustrate each situation. Be sure to include

 appropriate markings.1. $\overline{A D}$ is an altitude of $\triangle A B C$.

2. $\overline{N P}$ is a perpendicular bisector of $\overline{M L}$ in $\triangle K L M$

3. $\overline{G H}$ is a median of $\triangle E F G$.

4. $\overline{R S}$ is the angle bisector of $\triangle P R Q$.

5. $\overline{T U}$ is the altitude, median, and perpendicular bisector of $\Delta U V W$.

6.1-6.3 Special Segments of Triangles with answers

Answer the following with Always, Sometimes or Never.
6. The three altitudes of a triangle intersect at a vertex of the triangleformetimes
7. The three medians of a triangle intersectat a point outside the triangle.
inside
8. The three angle bisectors of a triangle intersect at a point inside the triangle.
9. Find the value of x if $\overline{B D}$ is an altitude of $\triangle A B C$. \qquad

Use the picture to the right to determine True or False:
Tuer 10 .If G is the midpoint of $\overline{\mathrm{ED}}$, then $\overline{\mathrm{CG}}$ is a median of $\triangle \mathrm{EBD}$.
IVu i1. If $\overline{\mathrm{CF}} \perp \overline{\mathrm{ED}}$, then $\overline{\mathrm{CF}}$ is an altitude of both $\triangle \mathrm{ECD}$ and $\triangle \mathrm{ECG}$.
TVU\& If $\overline{E B} \perp \overline{\mathrm{BD}}$, the $\overline{\mathrm{EB}}$ is an altitude of $\triangle \mathrm{ECD}$.
Fals ${ }_{3}$ If $\overline{\mathrm{CF}} \perp \overline{\mathrm{ED}}$, then $\overline{\mathrm{CF}}$ is a perpendicular bisector of $\triangle \mathrm{ECD}$.
True $4.1 f \overline{C G}$ is a median of $\triangle E C D$, then G is the midpoint of $\overline{E D}$.

TMes.Each leg of a right triangle is also an altitude of the triangle.

6.1-6.3 Special Segments of Triangles with answers

Complete each statement in as many ways as possible.

18 $\overline{F C}$ is Cosithe of $\triangle B F E$ (1 answer)

6.1-6.3 Special Segments of Triangles with answers
20. Fina $A B$ if $\overline{B D}$ is a median of $\triangle A B C$.
21. Fina $b \mathrm{C}$ if $\overline{\mathrm{AD}}$ is an altitude of $\triangle A B C$.

6.1-6.3 Special Segments of Triangles with answers

$$
\begin{aligned}
& \text { Slope: } \frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& m A B=\frac{1-5}{12-2}=\frac{-6}{10}=\frac{-3}{5} \quad 1 m A B: \frac{5}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { 27. Point } N \text { on } \overline{B C} \text { has coordinates (} 6, \frac{-10}{3} \text {). Is } \overline{\mathrm{NA}} \text { an altitude of } \triangle A B C \text { ? } \\
\text { Explain your answer. }
\end{array} \\
& \text { ANd: } \frac{\frac{10}{3}-5}{6-2}=\frac{15}{3} 90^{\circ}+m \\
& C B m: \frac{-8+1}{-6-12}=\frac{-7}{-18}=\frac{7}{18} \sqrt{\frac{7}{3}} \begin{array}{c}
\text { Not an } \\
\text { ablitudel }
\end{array}
\end{aligned}
$$

In $\triangle A H W, m \angle A=64^{\circ}$ and $m \angle A W H=36^{\circ}$. If $\overline{W P}$ is an angle bisector and $\overline{H Q}$ is an altitude, find each measure.

$$
\begin{aligned}
& \text { 28. } \mathrm{m} \angle \mathrm{AQH}=\frac{90^{\circ}}{80^{\circ}} \\
& \text { 29. } \mathrm{m} \angle \mathrm{APW}=\frac{26^{\circ}}{30 . \mathrm{m} \angle \mathrm{AHQ}=\frac{26^{\circ}}{126^{\circ}}} \\
& 31 . \mathrm{m} \angle \mathrm{HXW}=
\end{aligned}
$$

32. If $\overline{\mathrm{WP}}$ is a median, $\mathrm{AP}=3 y+11$ and $\mathrm{PH}=7 \mathrm{y}-5$, find AH .

$$
\begin{aligned}
A H & =A P+P H \\
& =3 y+y+7 y-5 \\
& =10 y+6 \\
& =10(x)+6 \\
& =40+6
\end{aligned}
$$aopbcmcabi.gspAltitudes copy test.gspperpendicular bisectors.gsp

(0) Angle bisectors.gspAltitudes copy.gspmedians.gsp3 medians.gsp3 altitudes.gsp3 perpendicular bisectors.gsp3 angle bisectors.gspWindmill made from midsegments.docx
Math Midsegment notes .docx

