7.1 Add & Subtract Polynomials

Essential Question:

How can you add and subtract polynomials?

Core Vocabulary

monomial, p. 358 degree of a monomial, p. 358 polynomial, p. 359 binomial, p. 359 trinomial, p. 359 degree of a polynomial, p. 359 standard form, p. 359 leading coefficient, p. 359 closed, p. 360

What You Will Learn

- Find the degrees of monomials.
- Classify polynomials.
- Add and subtract polynomials.
- Solve real-life problems.

Jan 31-12:56 PM

Finding the Degrees of Monomials

A monomial is a number, a variable, or the product of a number and one or more variables with whole number exponents.

The degree of a monomial is the sum of the exponents of the variables in the monomial. The degree of a nonzero constant term is 0. The constant 0 does not have a degree.

Monomial	Degree
10	0
3 <i>x</i>	1
$\frac{1}{2}ab^2$	1 + 2 = 3
$-1.8m^5$	5

Not a monomial	Reason	
5 + x	A sum is not a monomial.	Binomia
2	A monomial cannot have a variable in the denominator.	
Q	A monomial cannot have a variable exponent.	
O _x	The variable must have a whole number exponent.	

Examples:

Find the degree of each monomial.

a. $5x^2$

- **b.** $-\frac{1}{2}xy^3$
- **c.** $8x^3y^3$
- **d.** -3

2

4

6

Practice:

Find the degree of each monomial.

$$= (4m^2n)^0$$

$$= |$$

Jan 31-1:01 PM

Classifying Polynomials

Core Concept: Polynomials

A polynomial is a monomial or a sum of monomials. Each monomial is called *term* of the polynomial. A polynomial with two terms is a binomial. A polynomial with three terms is a trinomial.

The degree of a polynomial is the greatest degree of its terms. A polynomial in one variable is in standard form when the exponents of the terms decrease from left to right. When you write a polynomial in standard form, the coefficient of the first term is the leading coefficient.

Monomial	Binomial	Trinomial
4g	2x - 7	$2x - 4 + 3x^2$
-7	y + 2	$2s^2 - 4 + 3s$
23x ⁴		
8m ² n ⁴		

	$2x - 4 + 3x^2$	- 7 + 2x	23x ⁴
# of terms	3	2	1
Standard Form	$3x^2 + 2x - 4$	2x-7	23x4
LC	3	2	23
Degree	2		4

Standard Form of a Polynomial means the terms are listed in descending order based on degree.

Example:

Write $15x - x^3 + 3$ in standard form. Identify the degree and leading coefficient of the polynomial.

$$-x^{3}+15x+3$$

Jan 31-1:05 PM

Your Turn:

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.

a.
$$-3z^4$$

b.
$$4 + 5x^2 - x$$

$$5x^2-x+4$$

a.
$$-3z^4$$

b. $4 + 5x^2 - x$

D: 4

 $5x^2 - x + 4$
 $10x^2 - x + 4$
 10

c.
$$8q + q^5$$

Perform the indicated operation:

"a" is together and "b" is alone, then we will check.

Find the sum.

a.
$$(2x^3 - 5x^2 + x) + (2x^2 + x^3 - 1)$$
 b. $(3x^2 + x - 6) + (x^2 + 4x + 10)$
 $3x^3 - 3x^2 + x - 1$ $4x^2 + 5x + 4$

b.
$$(3x^2 + x - 6) + (x^2 + 4x + 10)$$

 $4x^2 + 5x + 4$

Find the difference.

a.
$$(4n^2 + 5) - (-2n^2 + 2n - 4)$$

 $4n^2 + 5 + 2n^2 - 2n + 4$
 $6n^2 - 2n + 9$

b.
$$(4x^2 - 3x + 5) - (3x^2 - x - 8)$$

 $4x^2 - 3x + 5 - 3x^2 + x + 8$

Jan 31-1:06 PM

Real-Life Problems

A penny is thrown straight down from a height of 200 feet. At the same time, a paintbrush is dropped from a height of 100 feet. The polynomials represent the heights (in feet) of the objects after t seconds.

a) Write a polynomial that represents the distance between the penny and the paintbrush after t seconds.

(-16t2-40t+200)+(116t2+100)

b) Interpret the coefficients of the polynomial in part (a).

-40 is the speed at which the objects

note dropping. Ore dropping. 100 is The initial distance between them.

SOLUTION

a. To find the distance between the objects after *t* seconds, subtract the polynomials.

Penny
$$-16t^2 - 40t + 200$$
 $-16t^2 - 40t + 200$
Paintbrush $-(-16t^2 + 100)$ $+ 16t^2 - 40t + 200$
 $-40t + 100$

- The polynomial -40t + 100 represents the distance between the objects after t seconds.
- **b.** When t = 0, the distance between the objects is -40(0) + 100 = 100 feet. So, the constant term 100 represents the distance between the penny and the paintbrush when both objects begin to fall.

As the value of t increases by 1, the value of -40t + 100 decreases by 40. This means that the objects become 40 feet closer to each other each second. So, -40 represents the amount that the distance between the objects changes each second.

Jan 31-1:09 PM

7.1 Add & Subtract Polynomials

Assign

p. 362

A: 12, 18, 20, 22, 30, 36, 40, 42, 46, 48, 50, 52, 54, 60, 64

B: 4, 6, 8, 14, 16, 22, 24, 26, 32, 34, 40, 42, 44, 46, 60, 62, 64

C: 2, 4, 5 - 35 odds, 47 - 52, 62 - 64