Special Products of Polynomials

For use with Exploration 7.3

Essential Question What are the patterns in the special products

$$(a + b)(a - b), (a + b)^{2}, \text{ and } (a - b)^{2}$$
?

EXPLORATION: Finding a Sum and Difference Pattern

Work with a partner. Write the product of two binomials modeled by each rectangular array of algebra tiles.

a.
$$(x + 2)(x - 2) =$$

b.
$$(2x-1)(2x+1) =$$

EXPLORATION: Finding the Square of a Binomial Pattern

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Draw the rectangular array of algebra tiles that models each product of two binomials. Write the product.

a.
$$(x+2)^2 =$$

b.
$$(2x-1)^2 =$$

Special Products of Polynomials (continued)

Communicate Your Answer

3. What are the patterns in the special products $(a + b)(a - b), (a + b)^2$, and $(a-b)^2$?

4. Use the appropriate special product pattern to find each product. Check your answers using algebra tiles.

a.
$$(x + 3)(x - 3)$$

b.
$$(x-4)(x+4)$$

a.
$$(x+3)(x-3)$$
 b. $(x-4)(x+4)$ **c.** $(3x+1)(3x-1)$

d.
$$(x + 3)^2$$

e.
$$(x-2)^2$$

f.
$$(3x + 1)^2$$

Notetaking with Vocabulary

For use after Lesson 7.3

In your own words, write the meaning of each vocabulary term.

binomial

Core Concepts

Square of a Binomial Pattern

Algebra

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

Example

$$(x + 5)^2 = (x)^2 + 2(x)(5) + (5)^2$$

= $x^2 + 10x + 25$

$$(2x - 3)^{2} = (2x)^{2} - 2(2x)(3) + (3)^{2}$$
$$= 4x^{2} - 12x + 9$$

Notes:

Sum and Difference Pattern

Algebra

$$(a + b)(a - b) = a^2 - b^2$$

Example

$$(x+3)(x-3) = x^2 - 9$$

Notes:

Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-18, find the product.

1.
$$(a + 3)^2$$

2.
$$(b-2)^2$$

3.
$$(c+4)^2$$

4.
$$(-2x + 1)^2$$

5.
$$(3x-2)^2$$

6.
$$(-4p-3)^2$$

7.
$$(3x + 2y)^2$$

8.
$$(2a-3b)^2$$

9.
$$(-4c + 5d)^2$$

10.
$$(x-3)(x+3)$$

11.
$$(q+5)(q-5)$$

10.
$$(x-3)(x+3)$$
 11. $(q+5)(q-5)$ **12.** $(t-11)(t+11)$

Notetaking with Vocabulary (continued)

13.
$$(5a-1)(5a+1)$$

14.
$$\left(\frac{1}{4}b + 1\right)\left(\frac{1}{4}b - 1\right)$$

13.
$$(5a-1)(5a+1)$$
 14. $(\frac{1}{4}b+1)(\frac{1}{4}b-1)$ **15.** $(\frac{1}{2}c+\frac{1}{3})(\frac{1}{2}c-\frac{1}{3})$

16.
$$(-m + 2n)(-m - 2n)$$

17.
$$(-3j - 2k)(-3j + 2k)$$

16.
$$(-m+2n)(-m-2n)$$
 17. $(-3j-2k)(-3j+2k)$ **18.** $\left(6a+\frac{1}{2}b\right)(-6a+\frac{1}{2}b)$

In Exercises 19-24, use special product patterns to find the product.

21.
$$19\frac{3}{5} \bullet 20\frac{2}{5}$$

22.
$$(31)^2$$

23.
$$(20.7)^2$$

24.
$$(109)^2$$

25. Find k so that $kx^2 - 12x + 9$ is the square of a binomial.