Practice A DAY TWO WS

1-3: Factor the polynomial.

1.
$$x^2 - 36$$

2.
$$49 - 4t^2$$

3.
$$1 - 25y^2$$

4-6: Use a special product pattern to evaluate the expression.

4.
$$11^2 - 8^2$$

5.
$$17^2 - 15^2$$

6.
$$65^2 - 62^2$$

7-9: Factor the polynomial.

7.
$$k^2 + 14k + 49$$

8.
$$m^2 - 18m + 81$$

8.
$$m^2 - 18m + 81$$
 9. $x^2 + 34x + 289$

Real World Problem: Use appropriate units. Then draw and label a diagram to get a visual.

- 10. The area (in square centimeters) of a square thank-you card can be represented by $x^2 + 6x + 9$.
 - **a.** Write an expression that represents the side length of the card.
 - **b.** What is the perimeter of the card when x = 4?

11-14: Solve the equation.

11.
$$v^2 - 25 = 0$$

12.
$$p^2 + 8p + 16 = 0$$

13.
$$q^2 - 14q + 49 = 0$$

14.
$$16x^2 = 25$$

15-17: Factor the polynomial.

15.
$$5x^2 - 20$$

16.
$$4x^2 - 24x + 36$$
 17. $9x^2 + 90x + 225$

17.
$$9x^2 + 90x + 225$$

18. Tell whether the polynomial can be factored. If not, change the constant term so that the polynomial is a perfect square trinomial.

a.
$$p^2 + 12p + 33$$

b.
$$x^2 - 16x + 61$$

- 19 20: Real-World Problems. Sketch an image to get a better visual. Use appropriate units.
 - **19.** While standing on a roof, you drop a hammer. The function $y = 16 16t^2$ represents the height y (in feet) of the hammer t seconds after it is dropped. After how many seconds does the hammer land on the ground?

- **20.** A square picture frame has side length x inches. The square opening for a picture within the frame has side length 3 inches.
 - **a.** Write a polynomial that represents the area of the picture frame, not including the picture.
 - **b.** The area in part (a) is 55 square inches. What is the side length of the picture frame? Explain your reasoning.